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Slides and info about non-IID learning

* http://noniid.datasciences.org/

e KDD2017 tutorial on non-IID learning Youtube videos:
https://www.youtube.com/watch?v=3RwyGoiYcLg
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IID to Non-IID Learning Systems

Non-1ID Systems

[ID Systems
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"Beyond IID in Information Theory" started as a workshop in Cambridge three years ago, organised by Nilanjana Datta and Renato Renner as a forum for the growing Interest In
Information theoretic problems and techniques beyond the strict asymptotic limit, and aimed at bringing together researchers from a range of different backgrounds, ranging from
coding theory, Shannon theory In the finite block length regime, one-shot information theory, cryptography, quantum Iinformation, all the way to quantum thermodynamics and other
resource theories.

Quantum Shannon theory is arguably the core of the new “physics of information,” which has revolutionised our understanding of information processing by demonstrating new
possibilities that cannot occur in a classical theory of information. It is also a very elegant generalisation, indeed extension, of Shannon's theory of classical communication. The origins
of quantum Shannon theory lie in the 1960s, with a slow development until the 1990s when the subject exploded; the last 10-15 years have seen a plethora of new results and
methods. Two of the most striking recent discoveries are that entanglement between Inputs to successive channel uses can enhance the capacity of a quantum channel for transmitting
classical data, and that it is possible for two quantum communication channels to have a non-zero capacity for transmitting quantum data, even if each channel on its own has no such
quantum capacity.

In recent years, both In classical and quantum Shannon theory, attention has shifted from the strictly asymptotic point of view towards questions of finite block length. For this reason,
and fundamentally, there Iis a strong drive to establish the basic protocols and performance limits in the one-shot setting. This one-shot information theory requires the development of
new tools, in particular non-standard entroples and relative entroples (min-, Rényl-, hypothesis testing), both In the classical and quantum setting. These tools have found numerous
applications, ranging from cryptography to strong converses, to second and third order asymptotics of various source and channel coding problems. A particularly exciting set of
applications links back to physics, with the development of a resource theory of thermodynamic work extraction and more generally of state transformations. Physicists have
furthermore found other resource theories, for instance that of coherence and that of asymmetry, which are both relevant to the thermodynamics of quantum systems and Interesting in
thelr own right.

The whole area Is extremely dynamic, as the success of three previous "Beyond IID" workshops has shown.
Dates: 18-22 July 2016 (following ISIT 2016)

Venue: [nstitut d'Estudis Catalans - C/ del Carme, 47, 08001 Barcelona

Description:

The present workshop, the fourth in a series that started in 2013 in Cambridge, will bring together specialists and students of classical and quantum Shannon theory, of cryptography,
mathematical physics, thermodynamics, etc, in the hope to foster collaboration In this exciting field of one-shot information theory and its applications. The plan is to have a modest
number of talks over the course of the week. Participation is open to all, but the organisers request that everyone interested in attending does register.

Topics:
The topics covered under "Beyond IID" include but are not limited to the following:

-Finite block length coding

-Second, third and fourth order analysis

-Strong converses

-Quantum Shannon theory

-Cryptography and quantum cryptography

-New Information tasks

-One-shot information theory and unstructured channels
-Information spectrum method

-Entropy Inequalities

-Non-standard entroples (e.g. Rényi entropies, min-entropy;, ...)
-Matrix analysis

-Thermodynamics

-Resource theorles of asymmetry

-Generalised resource theories

-Physics of information



IID Learning and Issues

lID learning dominates classic analytics and learning in Al/KDD/ML/CVPR/Statistics
research



Data Complexities: Challenge Existing
Theories, Systems and Applications
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Why the Prediction Doesn’t Work?

* There may be many reasons,
* Content understanding
Understand the semantic hidden in contents
Analyze the relevance between news and ads from every possible aspect
Treat each piece of news differently

* A fundamental assumption - [IDness

* Weaken or overlook the data complexities
* Relationships between objects, syntactically, semantically,
* Heterogeneity between objects, sources, ...



Classic Assumption — [I[Dness & IID Learning

IID learning:

Dominates classic analytics,
Al/KDD/ML/CVPR/Statistics research &

development
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IID Learning
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IID K-means
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What Makes K-means [ID?

Objective functions:
-K-means

k
argmin Y 3 [ —
5 i=1 X;ES;

- Object independency: X; do not consider interactions
with other objects {X,}

- Object IIDness: assume u. for every cluster follows the
same distribution

- Learning analytical goal: global = local distribution

- Global mean u,



IID Decision Tree, KNN

Note:

-Dependence is on X;;
individual variables
within an object (a

branch represents an

object)!

-Individual objects X

Question:
- How about if objects x;
and x; are dependent?
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Potential Risk of [ID Assumption

* Outcomes to be delivered by IID analytical/learning
methods/algorithms on non-IID data could be:

- incomplete Data Structure Index: DI
- biased, or even 10 T 1
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Non-lIDness

Longbing Cao. Non-IIDness Learning in Behavioral and Social Data, The Computer
Journal, 57(9): 1358-1370 (2014).

Cao, Longbing. Coupling Learning of Complex Interactions, IP&M, 51(2): 167-186
(2015)




Non-1IDness in Big and Small Data

* Heterogeneity:
» Data types, attributes, sources, aspects, ...
* Formats, structures, distributions, relations, ...
° Learning Outcomes Not identically distributed.

* Coupling relationships: _ Non-

» Within and between values, attributes, objects, sources, aspects, ... lIDness
e Structures, distributions, relations, ...
 Methods, models, ...

* Qutcomes, impact, ...

Not independent. -



Couplings vs. Well Explored Relationships

: numerical, categorical, textual, mixed-structure, syntactic,
semantic, organizational, social, cultural, economic, uncertain,
unknown/latent relation etc.

* Dependence, Correlation, Association are much more specific,
descriptive, explicit, etc.

* Coupling: explicit + implicit, qualitative + quantitative, descriptive +
deep, specific + comprehensive, local + global, etc.



Example: Behavio

r Couplings
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Cao and Philip S Yu (eds) Behavior Computing, 21-35, Springer, 2012



Example: Couplings in Behavioral Data

Coupling Relationships

Perspectives

Temporal : Party-basec
Inferential y
" Serial Coupling " One-Party-
Parallel coupling " Causal Coupling Multiple-Operation
" Synchronous relationship| conjunction Coupling — MU"’P/G'PG': ty-
— | Asynchronous coupling | One-Operation

Disjunction Coupling

Shared-variable - Exclusive Coupling ~ Multiple-Operation

— { Interleaving Multiple-Party-

Channel system



A Foundational Issue: Non-1ID Learning

Problem __--—""=--__
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Non-IID Similarity/Metric Learning



Similarity-based Representation

Can Wang, Longbing Cao, Minchun Wang, Jinjiu Li, Wei Wei, Yuming Ou. Coupled Nominal
Similarity in Unsupervised Learning, CIKM 2011, 973-978.

Can Wang, Dong, Xiangjun; Zhou, Fei; Longbing Cao, Chi, Chi-Hung. Coupled Attribute
Similarity Learning on Categorical Data (extension of the CIKM2011 paper), IEEE
Transactions on Neural Networks and Learning Systems.



Motivation

Why these two people
sit together at that
place at that
particular time?




Coupling Learning

TABLE 1. The Extended Information Table
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FIGCGURE 3. Extended information table and non-11Dness

learning.

Longbing Cao. Coupling Learning of Complex Interactions, Journal of Information Processing and Management, 51(2): 167-186 (2015).




Pairwise Couplings

* Intra-attribute couplings

* indicate the involvement of attribute value occurrence frequency within one
attribute

* how often the value occurs

* Inter-attribute couplings
* refer to the interaction between other attributes with this attribute
* reflect the extent of the value difference brought by other attributes



Hierarchical Coupling Relationships
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Set Information Function

Obtain value sets:
assigns the associated
value set of attribute q;
to the object set

Obtain object: relates

each value of attribute a;

to the corresponding
object set

Obtain value information: assigns a
particular value of attribute a;
to every object.

f — U?:l .-Fjr .-Fj : L:r —* 1_":;{1 £ _._ll- E R:I
f;{{ukl'l“"-uk:}}:{fj{ukl}r"‘:-f_'.i'l:u.i::}}:-

gi(v7) = {ui|fi(uw:) = v, 1 <7 <n, 1 <i<m},
g; (Vi) = {us|fi(w:) € V.1 =37 =mn.1=<i=<m},

where w;, up, .--- ,up, € U, and V] © V.

Obtain object set: maps the
value set of attribute a;to the
dependent object set

(3.1)
(3.2)
(3.3)



Measuring Couplings
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Coupled Attribute Value Similarity

DEFINITION 4.1. Given an information table S, the Cou-
pled Attribute Value Similarity (CAVS) between attribute
values x* and y of feature a; is:

55 (z,y) = 8, (x,y) - 6, (,y) (4.1)
where c‘i_,f—r“ and f_’i;—re are TaAV.S and IeAVS, respectively.

Intra-coupled Interaction: 5% (a2, y)
Inter-coupled Interaction: Je
éj (ﬂ-"a y}




Intra-attribute (Value) Similarity

DEFINITION 4.2. Given an information table S, the Intra-
coupled Attribute Value Similarity (IaAVS) between at-

tribute values  and y of feature a; is:

Ta(p ) — g5 ()] - |lg; (y)]
° (R l-y:. @+ 1ol + ;@ el
= arionale:

J
The Greater similarity is assigned to the
pairwise attribute values which own approximately equal frequency.
The higher these frequencies are, the closer
such two values are.

[ 5

IaAVS has been captured to characterize the
value similarity in terms of attribute value
occurrence times.




Measuring Intra-attribute Couplings

[ A ai a2 as
w1 Al \ T— B1 /4 C1
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Inter-attribute Similarity

Modified Value Distance Matrix:
Djic(z.y) = > | Pe;({g} ) — Py ({9} w)]

ge L

Object Co-occurrence
Probability

Inter-coupled Relative Similarity based on Power Set (IRSP), Universal Set (IRSV),
Join Set (IRSJ), and Intersection Set (IRSI).

S = Jin {2 — Pi);(VEIwT) — Pris (Vi |0¥) 1, (4.5)
i =
85 =2 — > max{ P ({vi}vF), Pey({ve}|v¥)}. (46)
Ve EVie
8 =2— > max{ Py ({vcHv), Pep({vdv¥)}, (47)
veel)

5 = 37 min{ Py ({onHoD), Pey({ondlo?)}, (4.8)
veel ]



Inter-attribute Similarity

DEFINITION 4.5. Given an information table S, the Inter-
coupled Atiribute Value Sitmilarity (IeAVS) between at-

tribute values x and y of feature a; is:

TL

5, (zy) = D ard;n(x.y). (4.7)

k=1,k7#7

where . is the weight parameter for feature ap, > ;. _, ot =
1, o, € [0,1], and 6;|x(x,y) is one of the inter-coupled rela-
tive similarity candidates.

IeAVS focuses on the object co-occurrence comparisons with four
inter-coupled relative similarity options.




Coupled Attribute Similarity for Values

Definition 5.5 (CASV): The Coupled Attribute Simi-
larity for Values (CASV) between attribute values ©¥

j
and vY of attribute a; 1s:

J

~.A T r T -l a T -l e @x -
OJ‘ {"E-'j . "i-'-?f {Ik}k:]_) — O_j‘ (11.} . E'j;) . éj‘ (’E’j . t’?. {Ik}k‘ij)-
(5.10)



Coupled Object Similarity

Coupled Object Similarity (COS) between objects:

Definition 7.1 (CASO): Given an information table S,
the Coupled Attribute Similarity for Objects (CASO)
between objects u, and u, is CASO(u,. u,):

TL

CASO(tug. uy) =D 520, oY {Vi}i_,). (7.1)

=1

Y



Examples: Measuring Hierarchical Couplings

TAEBLE 4 TABLE 5
Example of Computing Similarity Using /RSP Computing Similarity Using IRSU
vy vy Paa (V{181) | Pys(VilB2) | 2 — Py o(V{|B1) — P 12(V{|B2) T Pro({vepB1) | Puysi{ve}|B2) | max
=] 1A, Az, Az, Aa} 1] 1 1 Aq 05 [i] 05
A1} {-Az. Az, Aa} 0.5 1 0.5 Az 0.5 0.5 0.5
Az ] ] ]
1AL Az, As. Aa} =] 1 0 1 A ] 0.5 05
A a a a
T 1 2 3
U X - ozl
w1 Al \ TT— 51 /4 C1
wo Ao \ 1 \/ 'y
U Ao >§ Bo ﬁ C'o
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TABLE 6 CASO(ug,uz) = Y°_, 64 (v2, v, {I'L-}f.-ll =0.5+0.125+0.125 = 0.75.
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U PlodveHB1) | Pralive HBa) | max TABLE 7
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Theoretical Analysis

- Computational Accuracy Equivalence:

THEOREM 5.1. ITRSP, IRSU, IRSJ and IRSI are all equiv-
alent to one another.”



Complexity Analysis

- Computational Complexity Comparison:

Metric Calculation gteps Flaps per gtep éamplexit}r

ITRSP nR(R —1)/2 2(n — 1)27° O(n? R%27)
I RSU nR(R—1)/2 2(n — 1)R O(n“R*R)
ITRSJ nR(R—1)/2 2(n — 1) P O(n“R*R)
ITRST nR(R—1)/2 2(n — 1)Q O(n“R*“R)
20 =~ R> P > Q
R: The maximal number of attribute
@ values.

IRSP > IRSU > IRSJ > IRSI



Algorithm 1: Coupled Attribute Similarity for Objects

da L B3

u

=]

10

11
12
13
14
15
16
17

18

19

Data: Data set Sm.n with m objects and n attributes,
object w,, wy(x,y € [1,m]), and weight o = (o) 1xn-

Result: Coupled Similarity for objects & ASO (e, 1y ).

begin

S Compute pairwise similarity for any
two wvalues of the same attribute.

for attribute a;, 5 =1 : n do

for every value pair (vy,v] € [1,|V5]]) do

[ +— {ilv; == vy} Uz «— {i|v; == v;;};

A Compute intra—coupled similarity
for two values vy and t—"f.

a3 (vy, vy ) = ([U1] + U}/ (U || U2]) ;

A5 Compute coupled similarity for
two attribute values vy and 'uj"'.

& (v5, vy {Ve}io) «—

sia(nF, 0¥) - TeASV (vF, v¥, {Vi bees);

SS Compute coupled similarity between
two objects i, and uy.

CASO(uxr, uy) +— sum(s; (vy, vy, {Vi}i_1)):

| end

Function IeASV (v], v_?;'_. { Ve bressg)

begin

FS Compute inter—coupled similarity for
two attribute values vy and u}r.

for attribute (k = 1 :n} A (k # j) do

{vilzevs +— {vE}zevy (Hvglvervs ;

for infersection =z = Uz(1) : Uz(|L72]) do
Us «— {i|lvi == vi};
IC P, «— |Up (UL |/|U4];
IC Py +— |Uo N U2|/|Ual;
Mint e gy +— mMin(IC P, ICPy);

// Compute IRSI for v; and vj.

EJM_-{H_::;: U}r‘- If,k-}' - Suml:ﬂ"fiﬂl:ﬂ?fi-f}} "

51°(x, ¥) = sumfa(k) = E;rlk{tr;:._v_i"'_.l'}g]] ;
| return S (vy, vy { Ve ess) ;




Experiment and Evaluation

e Several experiments are performed on extensive UCI data sets to
show the effectiveness and efficiency.

* Coupled Similarity Comparison

* The goal is to show the obvious superiority of IRSI, compared with the most time-
consuming one |IRSP.

» COS Application (COD)

* Four groups of experiments are conducted on the same data sets by k-modes (KM) with
ADD (existing methods), KM with COD, spectral clustering (SC) with ADD, and SC with
COD.




Different Similarity Metrics

Data Structure Index: RD
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Fig. 3. Data structure index comparison.

Clustering performance indicator:
*Increasing
*Relative Dissimilarity (RD)
*Dunn Index (DI) [21]
*Decreasing:
*Davies-Bouldin Index (DBI) [20],
*Sum-Dissimilarity (SD)



Applications — Clustering Performance

Clustering Comparisons with AC and Mk

I
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Fig. 4. Clustering evaluation on six data sets.



Non-lID Metric Learning

Chengzhang Zhu, Longbing Cao, Qiang Liu, Jianpin Yin and Vipin
Kumar. Heterogeneous Metric Learning of Categorical Data with Hierarchical

Couplings. IEEE Transactions on Knowledge and Data Engineering, DOI:
10.1109/TKDE.2018.2791525, 2018




Motivation
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(1) instead of low (L) level.

H commitment is different from I.



Problem Statement

Categorical

Embedding
Space

Distance
Space

minimize Div(O||X)
x
subjectto o~ O
X ~ X
d(Oi, Oj) = X; O X;.

Distance metric d(., .) satisfies:

1) d(o;,0;)+d(oj,0r) > d(0;,0k),
2) d(O?;, Oj) > 0,

3) d(Oz‘,Oj) = d(Oj?Of,;).
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HELIC Framework

Heterogeneous
Kernel Spaces 1

Intra-attribute
Coupling Spaces
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HELIC: Heterogeneous Metric Learning with hlerarchical Couplings
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Learning Value-to-Class Couplings

Learning Intra-attribute Couplings
N () \_/@alue f@
(J)( (J)) _ ‘9("') (vi")l

Mg \V

Learning Inter-attribute Couplln /_@Iue co- o@
(4) (j) _ (3)

mie (v;) = V1), " |V*|v*

Learning Attribute-class Couplings /@e dlstrlbut|on@

. T
mR ) = pvPler) - pvPlen,) |




Heterogeneity Learning

Construct Kernel Space:

i k(mlpml) k(mlme) k(ml.’mng)) |
k(msy, my) k(mgo,my)  --- k(mo, m_?_b(j))
K = ’
E(m gy,my) k(m o, mg) - k(m g,m )]

Using various kernel functions for the value-to-class coupling spaces, a set of kernel
matrices {Ky, -+, Kp, } can be obtained. Further, a set of transformation matrices

{Tq, -, Tnk} can be learned to guarantee that the space of the p-th transformed kernel
K, only contains the p-th kernel sensitive information, where the K;, is defined as:

K, =T, K,



Metric Learning

With a positive semi-definite matrix w, = aprTTp, the metric d;; is calculated as :

L

dij = DKy iwpkps

p=1
where Kk, ;i = K, ;. — K, ;.
- diag 0 0 .
The distance can be represented as 1 diag
0 w, 0
W = ,
- 0 0 . wdlag

- ne -
LJ* E :kpm P’bj

.
L kijZ[kI?:j szg kgm]



Metric Learning

Objective function: {Selecting the kernels for their}

.. 1 sensitive data distribution
mugnbllze ) Z Eii + Al|wl1
? "o ijen \/

subject to = 0,
wkz:[) for k #1,
1+ Tig (kTWk b) < f?}j
Force the distance between 5”;5 > 0,Vi,j € No.

objects from different classes o {l, c(0;) = c(o;)
. Tij =
larger than a margin —1, c(o;) # (o)




Theoretical Analysis

Generalization Error Bound

£(w,b) — ez(w,b) < 2(1 + 1/VA)y/21n(1/6) /n,
+ (8 + 16\/6 ln(nonk)) /oA + 12/y/ne

Time Complexity
O(n,(n. + 1) + nk,n2 + nynynsep)

Space Complexity
O(nbnw)



Representation Performance of HELIC

KNN Classification F-score (%) with Different Distance Measures

Data HELIC COS MTDLE Ahmad DILCA Rough Hamming A%
Zoo 100* 100* 100* 100 1007 97.75+11.11 100° 0.00%
DNAPromoter 92.90+5.85* 75.89+13.35 81.67+10.19 79.9849.14 90.33£10.31 81.164+10.30  78.05+12.00 2.85%
Hayesroth 90.85-L5.07* 79.6449.71 68.54410.55 52.264+10.20 54.604:12.58 81.504+8.59 61.73412.40 11.47%
Audiology 75.444+7.60" 41.51+£7.20 36.704+7.50 54.29+8.96 64.83-£8.04 36.37£7.60 58.554+£10.30 16.36%
Housevotes 96.65 £ 3.40 9428 £495 9109555 9581 £4.15 94.90 £ 4.14 9159+ 514 9377 £ 530 0.88%
Spect 53.09 +£10.35" 51.31+9.16" 52.9449.48" 52.70+9.69* S5L11+£8.97* 51.18+£7.90%  51.98+8.85% 0.28%
Mofn3710 94.39 +5.86 79.3549.07 68.744-10.58 79.3549.07 71214842 77.704+11.44 74.824-8.08 18.95%
Monks3 100* 34.854+0.00 99.8840.52* 34.854-0.00 34.854:0.00 100* 92.06-£5.24 0.00%
ThreeOf9 91.01 4-2.93* 32.0010.00 75.8818.41 32.0040.00 32.004:0.00 78.8415.09 78.8445.09 15.44%
Balance 58.91 +1.31* 21.2540.00 41.80+5.82 21.2540.00 21.254+0.00 39.324+4.25 39.324+4.25 40.93%
Crx 83.26+5.68" 78.58+4.74 77.54+5.68 82.79 +3.86" 81.021+4.08 77.631+5.12 78.284-4.87 0.57%
Mammographic 79.61 +£4.59* 70.2247.12* 70.1447.10* 70.2047.02* 70.224£7.81* 69.7947.11 " 69.954+7.29* 13.37%
Flare 59.88 + 3.36* 57.01 4 4.38* 57.11 £ 3.09 54.41 £3.39 55.61 & 3.13 55.88 £ 4.38 54.98 + 4.00 4.85%
Titanic 23.33 + 248" 10.54 + 1.76 10.06 £ 0.62 10.06 £ 0.99 10.54 £ 1.76 10.54 £ 1.76 10.54 + 1.76 32.48 %
DNAnominal 93.12 + 1.05* 77.52 £ 1.21 52224000 8033 + 1.48 91.65 + 1.39 8146 +£ 1.75  69.11 & 1.45 1.60 %
Splice 93.69 + 1.11% 77.25 £ 2.19 24.45 4+ 0.00 79.85 + 2.07 84.96 + 2.21 81.05 + 1.81 69.29 4 2.24 10.28 %
Krvskp 96.98 + 1.06" 91.77 £ 1.66 90.04 £ 1.65 92.46 + 1.74 91.39 £ 2.05 89.00 4 1.43 91.48 £+ 1.68 4.89%
Led24 63.37 + 194" 62.11 + 1.85" 4135+ 274  61.81 £ 1.98" 62.58 4 1.85" 47.89 + 2.37 41.57 £+ 2.19 1.26 %
Mushroom 100 £+ 0.00* 99.98 + 0.06* 100 £ 0.00* 100 £ 0.00 * 100 £ 0.00* 100 £ 0.00* 100 £ 0.00* 0.00%
Krkopt 53.62 + 1.717  52.66 + 0.78" NA 5250 +£ 096" 5257 &£ 1.02%  39.05+£ 070 1042 £0.10 1.82%
Adult 84.91 & 0.86" 68.13 + 1.12 NA 68.20 &+ 1.07 68.16 + 1.14 67.76 4 1.04 68.01 &+ 1.04 24.50%
Connect4 56.33 + 0.78* 48.23 £+ 0.73 NA 46.95 + 0.49 46.65 4= 0.55 53.22 £ 0.73 45.81 £ 0.72 5.84%
Census 68.93 + 0.55* 66.88 + 0.40 NA 67.47 £+ 043 66.60 + 0.42 66.96 + 0.55 67.16 + 0.37 2.64%
Mean 78.71° 63.95 65.27 63.89 65.09 68.51 65.47 14.89%




Representation Quality of HELIC

(e, v)-good of Different Similarity Measures in DNAPromoter
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Classification Performance

KNN Classification F-score (%) with Gouplings

Dataset HELIC-KNN HC-KNN A%
Zoo 100 100 0%
DNAPromoter 92.904+5.85 94.934-7.00 0%
Hayesroth 90.85+5.07 85.89+6.39 5.77%
Audiology 7544760  5494+11.85 || 37.31%
Housevotes 96.65 = 3.40 9543 - 4.46 1.28%
Spect 53.09+10.35 51.40+9.51 3.28%
Mofn3710 94.3915.86 94.9243.36 0%
Monks3 100 100 0%
ThreeOf9 91.011+2.93 89.96+2.92 1.17%
Balance 58.91+1.31 59.64+£1.46 0%
Crx 83.26+5.68 82.43+4.39 1.01%
Mammographic 79.61+4.59 70.3147.00 13.23%
Flare 59.88 336 55.40 +£3.93 8.09%
Titanic 2333 £ 248 1215+ 1.65 || 92.02%
DNAnominal 93.12 + 1.05 91.83 + 1.64 1.40%
Splice 93.69 = 1.11  75.88 +=2.03 || 23.47%
Krvskp 96.98 &+ 1.06  92.49 4+ 0.92 4.85%
Led24 6337 £ 194 5771 +2.46 9.81%
Mushroom 100 + 0.00 100 + 0.00 0.00%
Krkopt 53.62 +1.71 5244 + 1.58 2.25%
Adult 84.91 £ 0.86  84.32 = 0.80 0.70%
Connect4 5633 £ 078  43.07+0.50 || 30.79%
Census 68.93 +0.55 64.23 + 0.49 7.32%
Mean 78.71 74.32 5.91%

» HC: only learn the hierarchical

couplings.

» HELIC: learn both hierarchical couplings

and heterogeneity.



Flexibility of HELIC

LR, RF and SVM Classification F-score (%) with HELIC and MTDLE

Data HELIC-LR MTDLE-LR A% HELIC-RF MTDLE-RF A% HELIC-SVM  MTDLE-SVM A%

Zoo 100 92.50 &+ 11.75 8.11% 100 99.64 -+ 1.63 0.36% 100 100 0%
DNAPromoter 98.48 +3.70  89.84 £ 10.89 9.62% 93.88 £ 9.02 7487 4 11.89 | 2539% 97.98 4+ 4.15 89.88-£10.35 9.01%
Hayesroth 83.56 £ 6.53 83.23 £ 8.16 0.40% 82.51L7.85 79.80x 10.66 3.40% 84.44 £ 8.62 81.64 £ 8.76 3.43%
Audiology 73.63 £ 633 4988 + 1026 | 47.61% 73.04 +£ 730 3923 4 13.19 | B6.18% 7347 + 6.07 62.154+10.70 18.21%
Spect 69.10£12.68 51.31 £ 8.79 34.67% 69.384+11.94 69.17 £15.11 3.04% 69.65412.22  69.33 £ 12.33 0.46%

Mofn3710 100 83.13 £ 1647 | 20.29% 81.6249.03 67.97+ 9.94 20.08% 100 100 0%

Monks3 9721 £ 1.79 100 0% 100 99.88 £+ 0.52 0.12% 100 100 0%

ThreeOr9 80.54 £ 5.05 79.52 £5.20 1.29% 99.71+0.96 97.14 £+ 2.60 2.65% 79.3715.61 79.46 £ 5.48 0%

Balance 91.24 £+ 7.00 63.94 £ 0.06 42.70% 58.521£1.86 5817 £ 224 0.60% 97.45+2.49 98.09 £+ 2.44 0%
Crx 85.76 + 4.86 83.96 + 4.82 2.14% 85.1543.72 34.21 4+ 4.00 1.12% 84.984+4.79 76.10 + 5.99 11.67%
Mammographic 82.62 £ 5.13 82.36 + 4.53 0.32% 82.7545.36 80.61 & 4.78 2.65% 82.5944.32 80.91 4 5.45 2.08%
Mean 87.96 78.51 12.04% 84.99 T7.84 9.19% 88.01 85.91 3.14%

The HELIC framework can be incorporated into different classifiers



Scalability of HELIC

Training Loss

Loss Value
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Scalability of HELIC

Time Cost of HMLHC

23 - Time Cost of HMLHC P Time Cost of HMLHC
== HMLHC Time Cost == HMLHC Time Cost =~ HMLHC Time Cost

30 - - HCL Time Cost -+ HCL Time Cost 35 - HCL Time Cost

o |+ HML Time Cost _ 20H e« HML Time Cost 10| #—* HML Time Cost
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(a) Time Cost v.s. Number of Objects. (b) Time Cost v.s. Number of Attributes. (¢) Time Cost v.s. Number of Attribute Values.

The Time Cost of HELIC w.r.t. Data Factors: Object Number n,, Attribute Number n,, and Maximum Number of Attribute Values r,,.. The

solid line refers to the total time cost of HELIC. The dotted line refers to the time cost of the hierarchical coupling learning parts. The star line refers
to the time cost of the heterogeneous metric learning parts.



Stability of HELIC

HMLHC-enabled KNN Classification F-Score

v The only parameter needs to tune in HELIC is

A.
v HELIC is stable for a large range of A
especially when A is less than 1.

0.90

0.88 1 L L L L L
10° 10* 10% 10% 10% 10° 10 10% 10° 10¢

A value

The HELIC-enabled KNN Classification F-score under Different
Setting of Parameter \.



Conclusions

* This work reports an effective heterogeneous metric for learning
hierarchical couplings within and between attributes and between
attributes and classes in categorical data.

* |t analyzes the heterogeneity in the hierarchical interaction spaces and
integrating heterogeneous couplings in complex categorical data.

* The proposed method can be applied to a variety of areas with categorical
data. One thing in applications is to select appropriate kernels by
considering specific data characteristics and domain knowledge of the
problems.



Non-|ID Representation Learning
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Metric-based Auto-Instructor for
_Learning Mixed Data Representation

Songlei Jian, Liang Hu, Longbing Cao and Kai Lu. Metric-based Auto-Instructor for
Learning Mixed Data Representation, AAAI2018

Source code is available at: https://github.com/jiansonglei/MAI



Background

e Categorical features
* e.g., gender, education, brand

* Numerical features
* e.g., age, length, price

* Mixed data contains both categorical features and numerical features
* e.g., census data, product information



Representation of categorical features

* One-hot encoding:

e Distributional representation
e Latent semantic analysis
 Random projection

* Distributed representation

* Embedding for categorical data
* Word embedding

1 Human 1

2 Human 1|

3 Penguin 2

4 Octopus 3

5 Alien 4

6 Octopus 3

7 Alien 4
1 1 0 0 0
2 1 0 0 0
3 0 1 0 0
4 0 0 | 0
5 0 0 0 1
6 0 0 i | 0
7 0 0 0 1




Representation of numerical features

* Raw representation
* Normalized representation

* Distributed representation

* Dimension reduction
* Principal component analysis (PCA)
* Non-negative Matrix Factorization (NMF)

 Autoencoder

Name

Standard
score

Student's t-
statistic
Studentized
residual
Standardized

moment

Coefficient of
variation

Feature
scaling

Formula

X—p

ag
X — 5%

s
&  Xi—
G 6
He
e
ag
7

X,' X — Xmin
Xmax - Xmin



Representation of mixed data

Tree }'{eights

50

* Transform numerical data into categorical one
* Discretization
-

* Transform categorical data into numerical data
0
* Statistics: e.g., TF-IDF 100 150;{?2;1122”;300 350

* Concatenated representation: treat categorical and numerical
features independently

weighting scheme = document term weight query term weight mmm
N ; N
1 (0.5+0.5 feq )-log—

fta - log —
¢ max Jtq g .
Alice Female 1.75m

Bob Male 1.75m

w
(=]

Trees

20

10

N
2 1+ log fia log(1 + n—)
t

3 (1 + log ft,d) C ].Og n—t (1 + log ft,q) 0 lOg n—t



What is a good representation for mixed data?

» At the feature level: capture the heterogeneous coupling (e.g.,
complex interactions, dependencies) between features
* Couplings between categorical features
* Couplings between numerical features
e Couplings between categorical and numerical features

* At the object level , a good representation should express the
discrimination and margins between objects to fertilize learning tasks.



MAI Architecture

P-Instructor C-Instructor

e Consists of two

| [Infinite-Margin Metric Model
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instructors in two PR o
encoding spaces & & & o & O
& 5P o S _;:.I:-i‘;'t‘:': ¥ :

I
I
I
* P-Instructor in plain I
encoding space |
I
I
I
I

* C-Instructor in coupled

—_——— e ——
A A
4y

I
I
I
: I
encoding space 4 , [
W] | WZ
P~ v _ . | _
I X Xi X I I X Xi Xj I
!_ Plain encoding space F* | | Coupled encoding space F* JI

) e

(@ 0

Object

triplet



Coupled Metric Learning Process

e Plain features: Concatenation of

categorical value

P-Instructor C-Instructor one-hot representation of
e mego s [ (ﬁp.em&mmmﬁ - fmm“gj categorical data and numerical
' |
° + % ° - | data
'* Coupled features: product kernel
O . of numerical variable and
- h Ordering Ordering |
|

Marginalizing Latent Representation Latent Representation | N K
Tl R N e - . 1 I k W a; — a,ff
bl e 5 L - plai,vy) = NZ{ (g, v5)W( » )}
k=1
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Experiments

° Application: clustering Table 1: Statistics of UCI datasets

e Partition-based: k-means |

_ Datasets Xl |Fl |F*  |Class]

e Density-based: DBSCAN Hilio - 5 e =

e Evaluation metrics: ﬁ?étitis ;gg 123 g é
* AMI Heart 270 8 5 >

e Calinski-Harabasz index ACA 690 8 6 2
CRX 690 9 6 2

CMC 1473 7 2 3

Income 32561 8 6 2




Table 2: K-means clustering performance w.r.t. AMI + standard deviation. The top two performers for each are boldfaced.

Datasets  Plain encoding  Coupled encoding CoupledMC Autoencoder | MAI-F MAI-D

Echo 0.178940.1033  0.1749+0.0444  0.1237+0.1147  0.2493+0.0207 | 0.3246+0.0000 0.3304-0.0000
Hepatitis  0.14534+0.0703  0.17614+0.0292  0.1532+0.0342 0.1689+0.0163 | 0.1848+0.0000 0.1905+0.0000
MPG 0.14904+0.0106  0.14774+0.0184  0.1373£0.0347  0.1536+0.0086 | 0.1831+0.0232 0.1770+0.0000
Heart 0.3130+0.0688  0.14394+0.0642  0.1037£0.1215 0.3302+0.0042 | 0.2632+0.0000 0.2774+0.0000
ACA 0.3204+0.1518  0.3433+0.1726  0.3182+0.0627 0.3477+0.0844 | 0.4258+0.0000 0.4258-0.0000
CRX 0.2322+0.1191 0.0836+£0.1109  0.271440.1361  0.1445£0.1477 | 0.4267+0.0000 0.4267+0.0000
CMC 0.02934+0.0052  0.0269+0.0013  0.0333+0.0070 0.0292+0.0037 | 0.0327+0.0077 0.0303+0.0081
Income  0.113940.0361  0.14144-0.0291 0.1258+0.0658  0.1314+0.0000 | 0.1325+0.0000 0.1325+0.0000
Average  0.1853+£0.0707  0.1547+0.0588  0.1583+0.0722  0.194440.0353 | 0.2467+0.0064 0.2488-+0.0010

Table 4: Calinski-Harabasz index on representation w.r.t. the

Table 3: DBSCAN clustering performance w.r.t. AMI/Clusters. g\ clidean distance for ground-truth labels

Datasets PF(|C|) CF(|C|) CMC(|C|) AE(|C|) MAI-F(|C|) Datasets PF CF CMC AE  MAI-F
Echo  0.123(5) 0.011(3) 0.067(2) 0.188(7) 0.392(3) Echo 1460 7.4 512 2199 56.81
ﬁ?étms 00-003119((248) 0060347?126)) 5’&397((1532) 8(1)4118?22; ggggg; Hepatitis 11.76  8.65 1591 16.05 44.15
Heart  0.024(4) 0.001(2) 0.003(2) 0.003(2) 0.130(3) gPG ;gég 1763843 ;'gi gé‘ig gi‘gé
ACA  0.003(4) 0.021(7) 0.031(2) 0.087(20) 0.227(6) eart : : : ' .

CRX  0.003(4) 0.018(6) 0.061(2) 0.102(16) 0.242(5) ACA 7290 31.69 1692 124.37 288.31
CMC  0.002(21) 0.009(2) 0.115(5) 0.003(13) 0.043(2) CRX 67.78 6594  20.77 10697 226.55
Income 0.157(493) 0.052(6) 0.052(6) 0.108(291) 0.1304(15) CMC 16.82 1246 17.21 2244  35.35
Average 0.0451 0.0242 0.0519 0.0818  0.1845 Income 1419.90 2029.04 1729.04 3009.80 5045.45




Visualization
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Conclusion

* A comprehensive representation for mixed data simultaneously learns the
couplings at feature level and the discrimination between objects at the
object level.

* A metric-based auto-instructor (MAI) model with two collaborative
instructors learns more discriminative representation between objects by
learning the margin enhanced distance metric.

* MAI is a general representation learning framework not limited to mixed
data, which has the potential to be applied to multimodal learning and
domain adaption.



Embedding-based Representation

Songlei Jian, Longbing Cao, Guansong Pang, Kai Lu, Hang Gao. Embedding-based
Representation of Categorical Data by Hierarchical Value Coupling Learning. IJCAI
2017



Motivation

 Hierarchical value couplings in data
* Pairwise value couplings
* Multi-granularity value clusters
e Couplings between value clusters

01 @sor PhD

02 Profe PhD ) —
03 Scientist PhD ..

04 Scienti

04 Engineer PhD

05 Engineer Maste

Couplings between values

Couplings

between

Value cluster 1 yd value

clusters

Value cluster 2




Related work

* Representation for categorical data

* Embedding-based representation
* One-hot encoding
* IDF encoding

* Similarity-based representation
* Pairwise couplings based methods

* Gaps for representation
* Ignore the intrinsic data dependency and interactions within values



The CURE Framework

* A novel Coupled Unsupervised Representation framework (CURE for
short) to capture the hierarchical value couplings in data
representation

* We instantiate CURE into an Coupled Data Embedding (CDE) method
for clustering.



The CURE Framework

|V]*r value representation matrix N

(3) Learn value O(Cr...C)
. ELERT
cluster couplings Value cluster coupling

Vxm' (m'=k'1+..4k') || [Vm® (m =K1t FK)

Different

value-cluster matrix C; value-cluster matrix C, granulariti
(2) Learn value t Clustering Clustering |[Clustering Clusterm% @
clusters mML k') 7 ML KY)  [(a(Ma, k') 7T na (M, kYY)
|V]%|V]| value-value |V]%|V] value-value
matrix M, matrix M,
(1) Learn value Coupling function Coupling function
couplings ¢1(T) ¢u(T)

Information table: T

80



Learning Complementary Value Couplings

* QOccurrence-based Value Influence Matrix e Co-occurrence-based Value Influence Matrix
Oo(v1,01) ... Go(v1, 1) Oc(vr,v1) ..o Gclvi,vp)
do(viv1) .o Polviy) dc(vi,v1) oo de(vr, )

Coupling function: Coupling function:
/ R N A & A p(vj) J o _ pl(vi,vj)
(.i)u(l;.ij) — (-(fr.fj) X P(“:) (,)(.(l,'_._l.j) = T‘)’



The Main Idea in CDE

* Build two value coupling matrices
* Occurrence-based Value Influence Matrix
e Co-occurrence-based Value Influence Matrix

* Generate value clusters with different granularities on value coupling
matrices

* K-means clustering with different parameters

* Learn correlation between different value clusters
 Use PCA to learn linear correlation



Algorithm

Algorithm 1 Value Embedding (D, «, [3)

Input: D - data set, « - proportion factor, J - dimension re-
ducing factor

Output: N - the numerical representation of all values N = XVT
Generate M, and M. - ?

N: Value embedding

1:
2: Initialize I = )

3: for M € {M,, M.} do
4:

5

it * X: Centralized matrix of indicator
6:  repeat H
7: I = [L; kmeans(M, k)] matrix |
8: Remove the cluster with only one value and store . . .

the remove cluster in 7m ¢ V: pr| NCI pal com ponent matrIX

9: k+ =1
10:  until length(rm) > ”_1] from SVD Of S
11: end for

12: X =1 — mean(I)
13: Calculate the covariance matrix S of X
14: [U, 2, V]| =SVD (S)
15: N = XV7 S=UXV.
16: Remove the columns whose maximum Euclidean dis-

tance of any two elements is less than 5 from N
17: return N

S: Covariance matrix from X




Experiments

* Comparison with Embedding Methods

Basic data info. & Data Factor F-score

Data 0| |V| FCI CDE 0-1 0-1P IDF
Wisconsin 683 89 0.212 | 0967 0946 0946 0.943
Soybeansmall 47 58 0.180 | 0915 0.829 0.854 0.763
Mushroom 5644 97 0.148 | 0.731 0.709 0.694 0.506
Mammographic 830 20 0.116 | 0.809 0.793 0.815 0.517
Zoo 101 30 0110 | 0.647 0596 0.607 0.537
Dermatology 366 129 0.089 | 0.670 0.598 0.606 0.616
Hepatitis 155 36 0.085 | 0.680 0.681 0.667 0.535
Adult 30162 98 0.060 | 0.654 0.585 0.588 0.479
Lymphography 148 59 0.057 | 0418 0381 0.379 0.561
Primarytumor 339 42 0.020 | 0.240 0.230 0.238 0.190
Average 0.673 0.635 0.640 0.565

p-value 0.003 0.003 0.020

CDE has an approximate 9%, 5% and 19% improvement over 0-1, 0-1P and IDF.
FCl is data indicator which measures the average correlation strength between features.
For most data sets with higher FCI, CDE outperforms the other embedding methods



Experiments

* Comparison with Similarity Measures

Clustering Info & Data Factor F-score

Data 1C| Vel CDE-G C(COS DILCA ALGO
Primarytumor 21 0.873 0.242  0.196 0224 0.209

Zoo 7 0.733 0.644 0538 0.583 0.547
Soybeansmall 4 0.712 LOo00  0.893 0910 0911
Lymphography 4 0.699 0.397 0.395 0.353 0.366
Dermatology 6 0.664 0.784  0.730  0.808 0.710
Mushroom 2 0.310 0.828 0.825 0.826 0.826
Wisconsin 2 0.237 0.962 0973 0.921 0.971
Hepatitis 2 0.141 0.667 0463 0.679 0.662
Mammographic 2 0.071 0.817 0.828 0.826 0.818
Adult 2 0.032 0.676 NA NA NA

Average 0.762  0.706  0.738  0.726
p-value 0.050 0.100  0.032

CDE has an approximate t 8%, 3% and 5% improvement over COS, DILCA and ALGO respectively in terms
of F-score. VCl is data indicator which reflects the discriminative ability of the value clusters in object
classes.For most data sets with higher VCI, CDE outperforms the other similarity methods.



Experiments

* Good scalability w.r.t. data size and dimensionality
* Linear with data size and quadratic with dimensionality
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< IDF < 1500
£ 80}|-=DILCA E
g +COS Z
= ALGO =
= &0 = 1000
T o :
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Conclusions

* Different from existing encoding-based embedding and feature
correlation-based similarity measures, a novel unsupervised
representation framework (CURE) and its instantiation (CDE) are
introduced in this paper, which model hierarchical value couplings in
terms of feature interactions and value clustering.

* Extensive experiments show that CDE significantly outperforms
typical embedding methods and similarity measures in capturing
feature value interactions. In addition, two proposed data factors
further indicate the feature value couplings and value clusters in data
sets.






Non-lID Ensemble Clustering

Can Wang, Zhong She, Longbing Cao. Coupled Clustering Ensemble: Incorporating
Coupling Relationships Both between Base Clusterings and Objects, ICDE2013.




Introduction

= Clustering ensemble has exhibited great potential in enhancing the
clustering accuracy, robustness and parallelism by combining results
from various clustering methods.

* The whole process of clustering ensemble
- building base clusterings
- aggregating base clusterings

- post-processing clustering.



Problems

Possible cluster labels based on
four base clusterings

- object u,:/{2, A, /X, a}
- object u;:'\ {2, A/ \Y, B}

- object U105‘ {1, AY, a}|

By following traditional way,
we have Sim(u,,u;)=
Sim(u,,u,,) = Sim(u,, u,,) = 0.5,
which is problematic.
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Problems

* The reason is that the similarity defined here is too limited to reveal
the complete hidden relationships among the data set from the initial
results of base clustering.

* A conventional way is to randomly distribute them in either an
identical cluster or different groups, which will inevitably affect the
clustering performance.



Motivation

Identify some coupling relationships: between the base clusterings

Base Clustering 4

and between the data objects

Object

Cluster a

1 5im =0

Cluster B -—

Base Clustering 1

- Cluster 1

Cluster 2

Fig. 2. A graphical representation of the coupled relationship between base
clusterings, where each circle denotes an object, each rectangle represents an

4 Coupling \
Relationships

. between the
Base Clustering 2

‘ Cluster A
- Cluster B

Base

cluster, and an edge exists if an object belongs to a cluster.

\_ Clusterings j




Hierarchical Couplings

We then come up with three research questions in the following.

»  (Clustering Coupling: There is likely structural relationship between base
clusterings since they are induced from the same data set. How to describe
the coupling relationship between base clusterings?

= Object Coupling: There is context surrounding two objects which makes
them dependent on each other. How to design the similarity or distance
between objects to capture their relations with other data objects?

= Integrated Coupling: If there are interactions between both clusterings
and objects, then how to integrate such couplings in clustering ensemble?



Framework of Coupled Clustering Ensembles

r/ Inter // Inter \\

q!f‘ Inter ;; Inter \r

Basel Basel Bas:-‘:. Clusters
?Clusterlng Clustering&. -+ [Clustering
i1 I N N \
S h____ A _— —

Q_—-‘ j?ntra Intra Intra \ Intra Intra Intra_/

[ Coupled Consensus Functions ]

I |
[ Clustering-based ] [ Object-based ] [ Cluster-based ]

U { U

Coupled Clustering Ensembles

Fig. 3. A coupled framework of clustering ensembles (CCE), where «----+
indicates the intra-coupling and +— refers to the inter-coupling.



Clustering Couplings

r‘/- Inter
\/m\,

Base Base Base C
‘?Clustering Clusteringfé. - Elustering.{
L1 2 ..—} L |
\\_"_—-‘ j?mra Intra Intra

L

Clustering Coupling: relationships within each base clustering and
the interactions between distinct base clusterings are induced from
the coupled nominal similarity measure

Intra-coupling of base clusterings: cluster label frequency distribution

Inter-coupling of base clusterings: cluster label co-occurrence dependency



Couplings in CCE
Coupling of Clusterings

- Intra-coupling of base clusterings indicates the involvement of
cluster label occurrence frequency within one base clustering

Definition 5.1: (laCSC) The Intra-coupled Clustering

Similarity for Clusters between cluster labels vy and -z:?' of

base clustering be; is: the set of objects whose cluster ]
..,glbl'vf“f"b lustering b,
7 e ) |,~‘§Ij(f-';'-:)| . \Ug(f?” a eS‘IS ; in base clustering bc;
J 3 195 (V)] + g5 ()] + g5 (v5)] - |g5(v7)]

(V.1)
] T ) _ ‘y . . e - e )
where g;(v7) and gj(e,.j} are the set information functions.

Greater similarity is assigned to labels with
approximately equal frequencies. The larger
these frequencies, the closer two labels.




Couplings in CCE
Coupling of Clusterings

- Inter-coupling of base clusterings means the interaction of other
base clusterings with this base clustering

Definition 5.2: (IeRSC) The Inter-coupled Relative Simi-
larity for Clusters between cluster labels vi and ’I.J? of base

clustering be; based on another base clustering bey, is:

Vi) = Z 1‘11i1‘1{P;€|j(T_J;gh_:;).Pk|j(-a,!k|-a,r§)},

v EM
(V.2)
where v;, € M denotes v, € ﬂff’j—}k('lf’f) 2 "v‘ﬁj—}k(q-’?ﬁ Yi—k
is the inter-information function. and Fj; is the information
conditional probability formalized in Equation (IIL.1).

Y r .Y
051k (V5 > V5




Couplings in CCE
Coupling of Clusterings

- Inter-coupling of base clusterings means the interaction of other
base clusterings with this base clustering

Definition 5.3: (IeCSC) The Inter-coupled Clustering
Similarity for Clusters between cluster labels vi and -a,-"}y. of
base clustering bc; is:

01 (T Y Vi hps) = Z Ak (07 0Y Vi), (V.3)
k=1k#j
where Ap is the weight for base clustering bcy,
Zézl.k?&j A = 1, Ap € [0,1], Vi(k # j) is a cluster
label set of base clustering bey, different from be; j to enable
the inter-coupled interaction, and 0, (vf, v7|Vi) is [eRSC.

J



Couplings in CCE
Coupling of Clusterings

1aCSC captures the base clustering frequency distribution by calculating occurrence
times of cluster labels within one base clustering, and 1eCSC characterizes the base
clustering dependency aggregation by comparing co-occurrence of the cluster
labels in objects among different base clusterings. Finally, there is an eligible way to
incorporate these two couplings together, specifically:

Definition 5.4: (CCSC) The Coupled Clustering Sim-
ilarity for Clusters between cluster labels v* and v of

J
c]ustering b{_‘jj IS how often the cluster label occurs

-C 7L IaC TeC r
05 (vF 07 [V e=y) = 057 (0F v5) - 05207 07 [{Va s ).

the extent of the cluster difference

where 5§ % and (‘E;T °“ are [aCSC and [eCSC, respectively.




Couplings in CCE

Coupling of Clusterings

TABLE 1 / \
AN EXAMPLE OF BASE CLUSTERINGS Base Clustering 1
5 [:] Cluster 1
U bey bea bes bey Base Clustering 4 [:] Cluster 2
5/6
Uy 2 B X B _
Cluster a Base Clustering 2
Us 2 A X o
U3 2 A Y 3 , Coupled ) Inter S 5/6 C] Cluster A
Uy 2 B X A / 3/_ 477172/ 9 7/9 () cuusters
(3 1 A X ] : .
Ue 2 A Y 3 \ uster p 4/6 Base Clustering 3
\
ur 2 B Y @ \,3/4, ,ﬁ [:] Cluster X
- ! 5 Y ° intra = [:]ClusterY
Ug 1 B Y ] \ /
u10 1 A Y a
Uy 2 B Y oz _ -
1 1 B Y o Fig. 4. Anexample of the coupled similarity for cluster labels o and /3, where
= «----+ indicates the intra-coupling and <— refers to the inter-coupling, the

value along each line is the corresponding similarity.



Object Couplings

el

Object Coupling: also focuses on the intra and inter-coupling and
leads to a more accurate similarity (€ [0, 1]) between data objects.

Intra-coupling of objects: all the results of base clusterings for data objects

Inter-coupling of objects: the neighborhood relationship among data objects



Couplings in CCE
Coupling of Objects

In terms of the intra-perspective, the objects u, coupled with u, by
involving the cluster labels of all the base clusterings for them.

Definition 5.5: (laOSQO) The Intra-coupled Object Simi-
larity for Objects between objects u, and u, with respect to
all the base clustering 1'et;ultﬂ; of these two objects is:

éfﬂo(um Uy ) Z(}C rthh 1) (V.5)

where r:)c vZ oY AV }E_,) refers to CCSC between cluster

j
labels vy and 1'}? of base clustering bc;.



Couplings in CCE
Coupling of Objects

Further, we can embody the inter-coupled interaction between different
objects by exploring the relationship between their neighborhood.

Definition 5.6: A pair of objects u, and u, are defined to
be neighbors if the following holds:

5 T (g, uy) >0, (V.6)
where 6% denotes any similarity measure for objects, €

[0,1] is a given threshold.

The neighbor set of object u,: N, = {u.|6”" (uy, u.) > 0}



Couplings in CCE
Coupling of Objects

Intuitively, objects u, and u, more likely belong to the same cluster if
they have a larger overlapping in their neighbor sets N, and N, .
Accordingly, below we use the common neighbors to define the inter-
coupled similarity for objects.

Definition 5.7: (leOSO) The Inter-coupled Object Sim-
ilarity for Objects between objects u, and u, in terms of
other objects u, 1s defined as the ratio of common neighbors
of 1, and u, upon all the objects in U.

. . L, . S Sim-

019 (ug, uy|U) = ﬁHuz cUlu, € ﬁ-'f:mﬂﬁ-'f;m_}|. (V.8)
where N7 and Nf;m are the neighbor sets of objects u,
and u, based on 699 | respectively.



Couplings in CCE
Coupling of Objects
Finally, the intra-coupled and inter-coupled interactions could be
considered together to induce the following coupled similarity for
objects by exactly specializing the similarity measure 6™ in (V.7) to
be 1a0S0 6'2° in Equation (V.5).

Definition 5.8: (CCOSO) The Coupled Clustering and
Object Similarity for Objects between objects u, and wu,
is defined when 4°“" is in particular regarded as 6799,
Specifically:

o) T 1 ATl et aTla

f}co(*{_.{m.-‘{iy|{;‘) = E|{u,z e Ulu, € ﬁ-‘izoﬁﬁ-'iyoﬂ. (V.9)
where sets of objects N1 = {u,|6!%(u,.u,) > 0} and
NIaO = 14|57 “O(u.y, u,) > 0}.

u



Couplings in CCE
Coupling of Objects

TABLE 11
AN EXAMPLE OF NEIGHBORHOOD DOMAIN FOR OBJECT

Object Neighborhood Domain
U {u1. ua. ug. us. Us. U7, Us. Ui0. U1l, Ul2}
Uz {’U-l- U2, Ugq, Us, Ug, Uy, Us, Ug, U10, U11, ’U-lz}
U10 {ug, us, ue, ur, us, o, U1, U2}
Object Pair Common Neighbors
Uz, Us {“U,-l. Uq, Uy, Ug, U7, Usg, U1p, U711, ’u-lg}
U2, U10 {us, ue, ur, us, w11, U12}
ESC’O('E.LQ* ug|U) = 0.75 and 690 (ug, u1p|U) = 0.5

It means that the similarity between objects u, and u,
is larger than that between u, and u,,



Integrated Couplings

r‘/ Inter
v Inter ;; Inter N/ \
Base. Base. Base. Clusters
?Clusterlng Clustering&. -« Elusterlng{ /
L1 2 ,:’ L |
Q—-‘ :‘?nrra Intra Inira

1

The data objects and base clusterings are associated through the
corresponding clusters, i.e., the position of an object in a clustering is
determined by which cluster the object belongs to

Integrated Coupling: treating each cluster label as an attribute value,
and then defining the similarity between objects on the similarity
between cluster labels over all base clusterings.



Clustering-based Coupling

V) indicates the label of a cluster to

The usual way. which the object u, belongs in the jth

base clustering bc;

1 if oF =Y
BON (2.y) = 6™ (v7 . 0¥) = =)
() (05 3) 0 otherwise,

Our proposed way CgC:
BCj (z,y) = o5 (v, v [{Vi}ect)
SGq(besy beiz) = > [BCs (w,y) — BCy(x.y)]’

1<z, y<m

Coupled Clustering Similarity for Clusters:

o) TaC T IEC' ;:r:
55 (v, oY [{Vitizn) = 6;°C (vF . vY) - 65 (vF v { Vi Ty



Experiments

Accuracy

Combined Stability Index
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Fig. 5. Clustering-based comparisons.



Experiments

Normalized Mutual Information

Combined Stability Index

Object-based Comparisons with NMI and CSI

Sy1 Sy2 Iris Wine Seg Glass Ecoli lonos

Data Set

Fig. 6. Object-based comparisons.



TABLE V
CLUSTER-BASED COMPARISONS ON AC, NMI AND CSI

Data Set Syl Sy2 Ins  Wine  Seg  Glass  Ecoli  lonos Blood Vowel Yeast| Avg
MCLA | 0945 0501 0875 0702 0560 0472 0528 0711 0.680 0365 0341 0.607

HBGF | 0949 0503 0877 0690 0532 0445 0468 0684 0528 0379 0301} 0578

AC LB-P 0952 0504 0878 0703 0582 0459 0530 0711 0719 0330  0.328] 0.609
| LB-S 0951 0480 0.844 0690 0560 0483 0539 0711 0713 0364 0.332] 0607
CrC-la | 095 0513 0893 0731 0579 0482 0339 0721 0713 0394 0379 0.627

CrC-C | 0969 0518 0902 0764 0579 0511 0587 0742 0723 0430 0378 0.646

MCLA | 0725 0406 074 0429 0526 0318 0510 0129 0015 0411  0223] 0403

HBGF | 0710 0389 0706 035 048 0316 0444 0109 0007 0414 0206 0377

NMI LB-P 0.723 0406 0745 0429 0548 0318 0511 0130 0016 0420 0.221] 0406
LB-§ 0.724 0363 0687 0412 0531 0335 0502 0130 0015 039 0210] 0391

CrC-la | 0734 0436 0752 055 0543 0323 0511 0164 0018 0445 0226 0.428
CrC-C | 0764 0456 0753 0580 0540 0337 0539 0171 0.019 0477  0.228] 0.442

MCLA | 0950 0710 0876 0828 0775 0554  0.640 0937 0.897 0783  0.774| 0.793
HBGF | 0953 0703 0761 0712 0716 0594 0528 0839 0642 0736  0.742] 0.721
sl LB-P 0954 0713 0860 0829 0840 0.601 0.673 0943 0893 0774 0786 0.806
| LB-§ 0943 0662 0787 0846 0767 0601 059 0926 0892 0757 0727 0.773
CrC-la | 0967 0736 0892 0868 0878 0.621 0649 0955 0.897 0.808 0.817| 0.826
CrC-C | 0963 0752 0910 0880 0.880 0.639 0.679 0957 0940 0.872  0.822] 0.845




Conclusions

We draw the following three conclusions to address the
research questions :

- are indeed coupled with each other, and the consideration
of such couplings can result in better clustering quality

- The inclusion of further improves the clustering
accuracy and stability

- The improvement level brought by the coupling of base clusterings is
associated with the , While the improvement
degree caused by the inter-coupling of objects is dependent on the



Non-lID Recommender Systems
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“ramework of Non-I1D
Recommender Systems

Longbing Cao. Non-IID Recommender Systems: A Review and Framework of Recommendation
Paradigm Shifting. Engineering, 2: 212-224, 2016.

Longbing Cao, Philip Yu. Non-lID Recommendation Theories and Systems. |EEE Intelligent Systems,
31(2), 81-84, 2016.
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Big data challenges existing theories and systems

Violence continues in Greece as rioters
firebomb buildings

Prosé-siers inAthens lorch offces and cirs amed clashes wath
tet nfior Fremice il tor beena et

TP e

EQEDE
A leger pimaber

oot e s i, Sonaey 31 Deormied 200 17 5 GrT
By Py

Pgeidl nary
I

Mira ey




Why the prediction doesn’t work?

* There may be many reasons,
* Content understanding
Understand the semantic hidden in contents
Analyze the relevance between news and ads from every possible aspect
Treat each piece of news differently

* A fundamental assumption - lIDness

* Weaken or overlook the data complexities
* Relationships between objects, syntactically, semantically,
* Heterogeneity between objects, sources, ...



A Systematic View of Recommendation
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(B). User demographics (A). Ratings
(E). Environment

Longbing Cao. Non-/ID Recommender Systems: A Review and Framework of Recommendation Paradigm
Shifting. Engineering, 2: 212-224, 2016.




Non-lIDness in Recommendation
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Non-lIDness in Recommendation
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Four-stage Recommendation Research

¢ Objective/subjective user-item interaction information
@ Explidt/implicit user-item non-liDness
1 -Knowledge-based

Objective item information ¢
|

|

! - User comments/ opinion-based
|

|

|

Explicit/implicititem non-lIDness i )
Content-based recommendation - 0
Cross-domain recommendation -
Group recommendation -
Knowdedge-based -
Item profiling -

- User-item relations-based
- Hybrid methods

). Iltem properties

¢ Objective/subjective user information // st Esxul:;:;(t:t;\;zrrj:;rsf r;zr::*l[;:leosr; i
© Explidt/implicit user non-liDness <Y (1 G D Cold-start -
{1 - Collaborative filtering
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. . Memonry-based models -
- Social recommendation

. . Cross-domain recommendation -
- Human-computer interaction Single /multi-criteria rating estimation
- User profilingfmodeling/human intelligence modeling B g

(B). User demographics (A). Ratings
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¥ Explicit/fimplicit environment non-lIDness
© Objective environment information
O -Environment factors-based - Dynamic/evolving/online
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Non-lIDness in Modern Recommendation

* Heterogeneity (Non-identical distribution)

* Due to the heterogeneity of users, items and domains, it is improper to model the
features of all users or items using identical distributions

* Heteroskedastic modeling for recommendation in long tail

* Modeling non-identical user feature distribution, non-identical item feature
distribution and non-identical choice distribution

* Cross-domain data (non-identical domain distribution due to heterogeneity)

Liang Hu, Wei Cao, Jian Cao, Guandong Xu, Longbing Cao, Zhiping Gu, Bayesian Heteroskedastic Choice Modeling on Non-
identically Distributed Linkages, ICDM 2014

Hu, L., Cao, L., Cao, J., Gu, Z., Xu, G., and Wang, J. Improving the Quality of Recommendations for Users and Items in the Tail
of Distribution. ACM Trans. Inf. Syst., 2017

Liang Hu, Jian Cao, Guandong Xu, Longbing Cao, Zhiping Gu, Can Zhu: Personalized recommendation via cross-domain
triadic factorization. WWW 2013

Liang Hu, Longbing, Jian Cao, Zhiping Gu, Guandong Xu, & Dingyu Yang: Learning Informative Priors from Heterogeneous
Domains to Improve Recommendation in Cold-Start User Domains. ACM Trans. Inf. Syst., (2016)

Liang Hu, Jian Cao, Guandong Xu, Jie Wang, Zhiping Gu, Longbing Cao, Cross-Domain Collaborative Filtering via Bilinear
Multilevel Analysis, IJCAI 2013



Modeling Non-IID Recommender Systems

* Couplings (Non-independency)

Recommender systems were born with non-independency, they always try to
find the coupling relationships among users, items, domains and other
information

Social Influence (coupling related users’ feedback)

Hu, L., Cao, L., Cao, J., Gu, Z, Xu, G., and Wang, J. Improving the Quality of Recommendations for Users and Items in the Tail of
Distribution. ACM Trans. Inf. Syst., 2017

Group-based Recommendation (joint decision)

Liang Hu, Jian Cao, Guandong Xu, Longbing Cao, Zhiping Gu, Wei Cao, Deep Modeling of Group Preferences for Group-based
Recommendation, AAAI 2014

Session-based Recommendation (context dependent)
Hu, L., Cao, L., Wang, S., Xu, G., Cao, J. and Gu, Z. 2017. Diversifying personalized recommendation with user-session context. (IJCAI'17)

Cross-domain recommendation (multi-domain dependency)

Liang Hu, Jian Cao, Guandong Xu, Longbing Cao, Zhiping Gu, Can Zhu: Personalized recommendation via cross-domain triadic factorization.
WWW 2013

Liang Hu, Longbing, Jian Cao, Zhiping Gu, Guandong Xu, & Dingyu Yang: Learning Informative Priors from Heterogeneous Domains to
Improve Recommendation in Cold-Start User Domains. ACM Trans. Inf. Syst., (2016



Coupled Matrix Factorization within Non-IID
Context

Fangfang Li, Guandong Xu, Longbing Cao. Coupled Matrix Factorization within Non-
lID Context, PAKDD2015, 707-719.




One basic approach: MF (Matrix Factorization)

* |dea: project users and items into a joint k-dimensional space.

* Represent user ui, and item vj using Pi and Qj as their latent profile
respectively

* Rating Rij is predicted as: R~R=P'Q
Ry =P";-Q;
Vi V) Vin
U 2 ? 3
1% 1%
ul oo 0 oo oo e oo e 1
w, | 4 | 1| 2] 2 Ui _ x
R u, k




Problems and Solution

* MF problems:
* MF solve the rating estimation as a mathematical problem

* Same rating table for different businesses would lead to same rating
estimation

e User/item non-lIDness are not involved
* Solution:



User/item Coupling Analysis

* Deep couplings within users and items contribute to the rating
behavior.
» Attribute values are coupled together and not independent,
 Attributes are also coupled together and influence each other.

Attributes Attributes




Non-|lID Users

* For two users described by the attribute space, the
(CUS) is defined to measure the similarity between users.

Definition 1. Formally, given user attribute space S;; =< U, A,V f >, the Coupled
User Similarity (CUS) between two users u; and u;j is defined as follows.

J
CUS(ui, uj) Z (Vik, Vi) * 047 (Vi Vi) (D
L_:

where Vyy, and Vyy, are the values of attribute k for users u; and u;, respectively; and
--Li|' . R . . J. | . R Lil' . . . . , . R
0" is the intra-coupling within attribute Ay, 0,° is the inter-coupling between different
attributes.



Non-lID [tems

* For two items described by the attribute space, the
(CIS) is defined to measure the similarity between items.

Definition 2. Formally, given item attribute space So =< O, A", V', f' >, the Cou-
pled Item Similarity (CIS) between two items o; and o; is defined as follows.

CIS(0;,0;) Z{S )) * 045 (Vi Vi) (2)

where V. and V! 1 are the values of attribute j for items o; and o;, respectively; and

03; is the intra-coupling within attribute Ay, o f;e is the inter-coupling between different
attributes.

Can Wang, Xiangjun Dong, Fei Zhou, Longbing Cao, Chi-Hung Chi: Coupled Attribute Similarity
Learning on Categorical Data. IEEE Trans. Neural Netw. Learning Syst. 26(4): 781-797 (2015)



Matrix Factorization

* Traditionally, the rating matrix can be modeled by MF as:

* The prediction task of matrix is transformed to compute user’s factor matrix P
and item’s factor matrix Q.

* Once P and Q are calculated, R can be easily reconstructed to predict the
rating given by one user to an item.

-~

H=rm-+ PQT



Coupled MF

e CMF considers three sorts of information
* Traditional rating matrix
* Non-lID User coupling based on users’ attributes
* Non-IID Item coupling based on items’ attributes

N Matrix
"| Factorization |
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CMF Model
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Baselines

* PMF is a probabilistic matrix factorization approach;

e RSVD: Singular value decomposition is a factorization method to decompose the rating matrix;

* ISMF is an unified model which incorporates implicit social relationships between users and
between items computed by Pearson similarity.

* User-based CF (UBCF) computes users’ similarity by Pearson Correlation on the rating matrix

* |tem-based CF (IBCF) considers items’ similarity by Pearson Correlation on the rating matrix

* Hybrid models PSMF, CSMF and JSMF respectively augment MF with Pearson Correlation
Coefficient, Cosine and Jaccard similarity measures to compute the relationships between users
and between items based on their attributes.



Data and Evaluation Metrics

* Movielens 1M:
* 1,000,209 anonymous ratings; 3,900 movies; 6,040 users;

* User information: “gender”, “age”, “occupation” and “zipcode”
* Movie information: “genre” attribute.

* Book-Crossing
e 278,858 users, 1,149,780 ratings on 271,379 books;
* User information: “gender” and “age”

” u

* Book information: “book-author”, “year of publication” and “publisher”

e Evaluation Metrics
Z(ui}“—n‘ ('T'u.i _'Fu.i)z
RMSE = 2)l Treat » '
w/ |j?test|

Z(u,z’ﬂﬁtmf [Tu,i — Puil

MAFE =
‘}?test‘




Compared to MF and CF

Data Set | Dim |Metrics| PMF (Improve) | ISMF (Improve) |[RSVD (Improve)|| CMF
100D MAE |[1.1787(28.09%) |1.1125 (21.47%)|1.1076 (20.98%) ||0.8978

RMSE [1.7111 (71.07%)|1.5918 (59.14%)| 1.5834 (58.30%) || 1.0004

Movielens | 50D MAE (1.1852(18.43%)|1.1188 (11.79%)|1.1088 (10.79%)|(1.0009
: RMSE [1.8051 (58.98%)|1.6103 (39.50%)| 1.5835 (36.82%)||1.2153

10D MAE (1.2129 (17.19%)|1.1651 (12.41%)| 1.1098 (6.88%) |[1.0410

RMSE [1.8022 (46.25%)|1.7294 (38.97%)| 1.5863 (24.66%)|(1.3397

100D MAE | 1.5127 (3.65%) | 1.5102 (3.40%) | 1.5131 (3.69%) ||1.4762

RMSE | 3.7455 (0.76%) | 3.7397 (0.18%) | 3.7646 (2.67%) ||3.7379

Bookcrossine| 50D MAE | 1.5128 (3.67%) | 1.5100 (3.39%) | 1.5131 (3.70%) ||1.4761
=T RMSE | 3.7452 (0.74%) | 3.7415 (0.37%) | 3.7648 (2.70%) ||3.7378

10D MAE | 1.5135 (3.73%) | 1.5107 (3.45%) | 1.5134 (3.72%) ||1.4762

RMSE | 3.7483 (1.20%) | 3.7440 (0.77%) | 3.7659 (2.96%) ||3.7363

Data Set Metrics| UBCF (Improve)| IBCF (Improve) || CMF
Movielens MAE | 0.9027 (0.49%9:) | 0.9220 (2.42%:) ||0.8978
RMSE | 1.0022 (0.18%) (1.1958 (19.54%:) | 1.04M04

Bookcrossine MAE |1.8064 (33.02%9:)1.7865 (31 .DSfp':f.::-} 1.4762
Sl RMSE | 3.9847 (24.608%:) (3.9283 (19.04%) || 3.T3IT9




Compared to Hybrid Methods
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Summary of CMF

e Contributions

* Applied a NonlID-based method to capture the couplings between users and
items, based on their objective attribute information;

* Integrated user coupling, item coupling and users’ subjective rating
preferences into matrix factorization learning model;

» Evaluated the effectiveness of Coupled MF model.



Session-based Recommender
Systems

Liang Hu, Longbing Cao, Shoujin Wang, Guandong Xu, Jian Cao, Zhiping Gu.
Diversifying Personalized Recommendation with User-session Context. In [JCAI.
2017



Deficiency of Current Recommender Systems

* |tems are often repeatedly recommended.

* Users prefer more diversified options than those they have had.

* |tis unlikely that a consumer will purchase another a loaf of bread if they have purchased one,
whereas butter or ham may be a more appealing recommendation.




Modeling Session

* Generally, choices are non-iid, which depend on previous choices in a session.

* A system makes more sensible and relevant recommendations if the session
context was taken into consideration.

 The choices of items in a session may not follow a rigidly ordered sequence

* For example, the order in which toast, milk and ham are put into a shopping cart makes no
difference to the transaction.




Inspiration by Language Model

* Language model is the probability distribution over sequences of words in
natural language processing (NLP).

* P(w¢|c) where ¢ = {wy, ...,wg}is contextand w; € V

* |f we think of words as items, predicting a relevant word based on context is
equivalent to recommending a relevant item according to the current session.

* Both the number of items in RS and the size of vocabulary in language modeling
are large, usually > 10°



Wide-in-wide-out Shallow Networks

e SWIWO Architecture

* Three-layer shallow wide-in-wide-out networks

h, = o (W!,)

O @ OQ Pﬁ(vt|u, c\vt) where ¢ = {vy, ...,
/v\
user embeddings /W3 w* context embeddings
Wl Wz vVEC
[ N c

softmax layer to model the probability of choice

0@ - OO

Z
OO

O-@0

input layer encodes the raw user-session context

wy,hy,

Vi) oue)

Z wy,d (WQ,U)

vEeEC



Maximum Log-likelihood Estimation

* Given session context ¢ and target item v, if we have N data samples:
Lo = ) l0g Po(vcltic, €) = ) 5, (t,€) = log Z
d d

where d =< ¢, v, > denotes one user session data, ¢, =< u,, ¢ >
Sy, (u.€) = W} h, + W h,

* The challenge is the large size of item to compute normalizing
constant
e Z =Y, e normally |V| > 10°
* For each date sample, it needs to compute Z = Y, eSv(€it),
e The total computation complexity N|V| > 101° for each iteration, if N > 10°



Softmax Approximation

* Noise-contrastive estimation (NCE)
* Given a noise distribution Q(w)
* Draw K noise samples {Wy, ..., W }~Q (w)

* The probability comes from data distribution is
Pg(wlc)
Pp(w|c) + KQ(w)

QW) = 1 - Pp(y = 1w, ) = 5o
Pg(w|c) + KQ(w)
e Log-likelihood (LL)
logPp(y = 1|lw,¢) + Xy, log[l — Pg(y = 1|w, c)]

Pg(y = 1lw,c) =




Experiments

* |JCAI-15 Dataset

* This real-world dataset was collected from Tmall.com which is the largest
online B2C platform in China, and it contains anonymized users' shopping logs
for the six months before and on the “Double 11” day (November 11th).



Training and Testing Data

* From the six-month shopping logs, we randomly held out 20% of the
sessions from the last 30 days for testing, and the remaining data are
used for training.

* We constructed two testing sets: LAST and LOO (Leave one out).

Statistic of IJCAI-15 dataset for evaluation
#Husers: 50K
#items: 52K

avg. session length: 2.99

#training sessions: & 0.20M
#training examples: & 0.59M
#testing cases (LAST): 4.5K
#testing cases (LOO): 11.9K




Comparison Methods

* POP: This recommender simply ranks items for recommendation according
to occurrence frequency.

e FPMC: This recommender is a combination of MF and first-order MC,
which uses personalized MC for sequential prediction.

* PRME: This recommender learns personalized transition probability in a
MC model by applying a pairwise embedding metric method to handle
data sparsity.

* GRU4Rec: This recommender is a deep RNN which consists of GRU units.
* SWIWO: This is the full model proposed in our paper.

* SWIWO-I: This a sub-model of SWIWO which only models item-session
contexts without considering users.



Accuracy Evaluation

* The result of REC@10, REC@20 and MRR over the testing sets Last

and LOO. |

LAST |

[ Model || REC@I0 | REC@20 | MRR |
POP 0.0185 0.0317 0.0104
FPMC 0.0023 0.0068 0.0021
PRME 0.0670 0.0821 0.0363
GRU4Rec 0.2283 0.2464 | 0.1386
SWIWO-I 0.3223 0.3797 0.1918
SWIWO 0.3131 0.3689 0.1896

| LOO |

[ Model | REC@10 | REC@20 [ MRR |
POP 0.0234 0.0420 ] 0.0123
FPMC 0.0064 0.0117 0.0044
PRME 0.0757 0.0976 | 0.0431
GRU4Rec 0.2242 0.2425 0.1574
SWIWO-I 0.3177 0.3810 0.1903
SWIWO 0.3082 0.3703 0.1885




Diversity Evaluation

 We aim to diversify recommendation with session context.
* Now, let’s consider the following metrics.

e DIV@K: This diversity measures the mean non-overlap
ratio between each pair of recommendations (R;, Rj)
over all NV top-K recommendations (note that the num-
ber of all possible pairs is N(N — 1)/2).

DIVOK = =Y (1 =10
NN —1) i ( R: UR;|

e F1@K: The traditional F1 score is the harmonic mean
of recall and precision. Here, we replace precision with
diversity to jointly consider accuracy and diversity.

20RECOK x DIVQK)

FlakK = RECQK + DIVQK




Diversity Evaluation

 SWIWO considers the whole session context so they more easily provide

diverse recommendation results.
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Cross-domain Recommender
Systems

Hu, L., Cao, L., Cao, J., Gu, Z., Xu, G., & Yang, D. (2016). Learning Informative Priors
from Heterogeneous Domains to Improve Recommendation in Cold-Start User
Domains. ACM Transactions on Information Systems (TOIS), 35(2), 13.



Cross-Domain Collaborative Filtering

* Leverage information from multiple related domains

 The basic idea is based on the assumption of the existence of multiple related
domains and the user preference from each domain is not independent
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Matrix Factorization
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MF for CDCF

* Concatenating the rating matrices for all domains
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Disadvantages

1. Each domain may be quite heterogeneous

 E.g. the factor of color has big impact on the user preference in the
domain of cloth

* but hardly has impact on the user preference in domain of book

2. Above methods using the single domain model implicitly assume
the homogeneity of items.

* Obviously, such assumption may decrease the accuracy of prediction due
to the heterogeneities of different domains.



MF-based Transfer Learning

* Transfer the knowledge learned from the auxiliary domain to the
target domain [Pan, et al. 2010] [Singh and Gordon, 2008].

* Assume dense user data in the auxiliary domain

 The user-factor vectors are co-determined by the feedback in auxiliary

and target domains @
> Transfer >

A T w item-factor
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Deficiency

Blind Transfer

If no data is available for a user in the target domain (marked with a red box), the user-factor
vector u; is simply determined by the data in the auxiliary domain.

If u; is transferred to the target domain and interacts with heterogeneous item factors, it

S

may yield a poor prediction.
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Modeling Domain Heterogeneity

domain heterogeneity
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Jointly leveraging the complementary data from multiple domains

Domain factor is an essential element in cross “domain” problem to model
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Canonical Decomposition/Parallel Factor
Analysis

* Decompose a tensor into a sum of rank-one components

* E.g.3D Tensor:

R
X =[AB,C] = z A, 9B, oC,
r=1

b ], [b ],

— e

_i i &




Irregular Tensor Factorization

, Video .
Music . )
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Movie B Q
Book N ’
/ 2 X3 -
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* Sum loss over all domains:

. 1 K 2 AU /11/ AC
argmin — E W, ® (X — UERVDHF + —||U|I? +=||VI||I? + =||C||?
uve 24ag=1 2 2 2

* With orthonormal constraints, we can obtain equivalent loss:

<[ (1Y = WV, CIIZ + A VI + 20 IVIZ + AclICI2 X, ® H|
argminz | (1Y — [0V, CII* + 2 UNE + A IVIIE + AclIClE) + ) [|1Xi ® Hie|[,
uv.c 1: Regulariz'ed TF Model K

2: Loss Compensation



Weight Matrix Configuration

* Rating Data

(1 (k,i,j) is an observation
* Wrij=1va (k,i,j)isanoisy example
0 else

* Noisy data act as reqularization



One-class Data

* One-class feedback

* E.g. purchase record matrix marks entries with 1 to indicate the buy and the rest of
data are unknown

* It does not have observed negative examples so one-class data is purely
indiscriminate

* Implicit feedbacks can indirectly reflect opinions through user
behavior

* Users may deliberately choose to access which items [Marlin et al, 2007]



Confidence Modeling

e Confidence level

* Observed chosen items imply more confidence of like over unchosen ones

* Low confidence level to model users’ dislike over unrated items since we have no
evidence to prove the explicit dislike

* Weight Matrix (Confidence Matrix)

_ {ck,l-,j +1 (k,i,j) is observed
Wiij =
1 else



Learning Algorithm

[U,V,C, {P}] = WITF ({X,}, {wi}, (Wi 1} Au. Av, Aec)
Input: X, is the data matrix for each domain

wy is the influence weight for each domain

Wy, j is the weight on each entry

Ay, Ay, Ac are the regularization parameters
Output: U is the factor matrix for users

C is the factor matrix for domains

V,{P,} are the factor matrices for items

Begin:

Initialization:

Wi« wgwij, VeI

Randomly initialize U, C

P, < AxB}, with the SVD: X, UX, V" ~ A 2B}

Iteration:

Add neighbor noisy examples (optional):
Randomly select S blank entries for each user i
Fill neighbor noisy examples in the selected entries

Generate tensor Y with the slice for each domain k:
Yy « (W, ® Xy Py

Sub-iteration for {U,V, C}:
Update U, in parallel for each user i using Eq. (23)
Update Cy . in parallel for each domain k using Eq. (24)
Update V using Eq. (25)
Repeat 7-9 with m iterations

Sub-iteration for {P, }:
Update P, in parallel for each domain k using Eq. (22)
Repeat 11 with n iterations

Repeat 4 —12 until convergence
Return U,V,C,{P;}

End



Statistics of Epinions Dataset

* Covering 5 domains

Domain # Items # Ratings / # Users # Ratings / # Items Sparsity
Kids & Family* 3,769 4.9309 9.9077 0.0013
Hotels & Travel* 2,545 3.9210 11.6676 0.0015
Restaurants & Gourmet 2,543 3.3394 9.9446 0.0013
Wellness & Beauty 3,852 3.5481 6.9756 0.0009
Home and Garden 2,785 2.6003 7.0707 0.0009




Comparison Methods

kNN: This is a baseline method to recommend movies watched by the top-k most
similar groups.

MF-GPA: This method performs matrix factorization (Salakhutdinov and Mnih
2008) on the group ratings that are aggregated from individual ratings through a
specified strategy.

MEF-IPA: This method performs matrix factorization on individual ratings, and then
aggregates the predicted ratings as the group ratings, using a specified strategy.

OCMF: This method performs one-class MF (Hu et al. 2008) on the binary group
ratings where the weights are set according to a specified strategy.

DLGR: This is our deep learning approach, where the variance parameters of the
DW-RBM (cf. the previous section) are set according to a specified strategy.

OCRBM: This simply uses an RBM over the group choices without a connection to
collective features. The variance parameters are set the same as the DW-RBM.



Rating Prediction on Epinions.com

RMSE of comparative methods (the smaller the better)

Target Domain Kids & Family Hotels & Travel
Method TR-80% TR-50% TR-80% TR-50%
kNN-CDCF 1.2562 1.3016 1.1605 1.3338
PMF-CDCF 1.17197 1.35477 1.12607 1.29257
CMF 1.1312% 1.2908* 1.0805* 1.2457*
PARAFAC2 1.1102* 1.1458* 1.0647* 1.0891*
CDTF 1.0968* 1.1219* 1.0351* 1.0585*
WITF 1.1043* 1.1293* 1.0375* 1.0619*
WITF+WRMF 1.0563** 1.0835%* 0.9983** 1.0284**

RMSEs of Comparison CDCF Methods on Epinions Dataset
A baseline, * p<0.01, ** smallest p




Statistics of Testing Users Grouped by the

Number of Ratings

Kids & Family Hotels & Travel
User Group
# Ratings
# testing users in TS-50% # testing users in TS-50%

Experienced > 20 120 55

Little Experienced 6~ 20 816 517
Cold-Start 1~5 2,260 2,807

Fully Cold-Start 0 695 1,072




The Prediction Performance over Different

Numbers of Training Ratings

 RMSE of comparative methods (the smaller the better)

Kids & Family

Hotels & Travel

RMSE

Experienced Little Experienced Cold-Start Fully Cold-Start
User Groups

Il

d Little Experienced Cold-Start  Fully Cold-Star
User Groups

—-



Click Statistics on Tmall.com Dataset

* One-class problem

Domain # Items # Clicks / # Users # Clicks / # Items Sparsity

D1* 8,179 23.2003 19.7170 0.0028
D2* 6,940 18.5455 18.5749 0.0027
D3 5,561 22.5005 28.1246 0.0040

D4 6,145 16.0606 18.1671 0.0026




The Mean AP@5,10 and nDCG@5,10

Target D1
Domain TR-80% TR-50%
Method AP@5 AP@20 | nDCG@5 | nDCG@20| AP@S AP@20 | nDCG@5 | nDCG@20
Most-Pop 0.01617 0.0175% 0.02697 0.03824 0.03227 0.0223A 0.0567/ 0.0577A
N-CDCF 0.0252* 0.0240* 0.0441* 0.0465* 0.0352* 0.0210 0.0604* 0.0534
MF-IF 0.0263* 0.0293* 0.0432* 0.0631* 0.0455* 0.0324 0.0813* 0.0854*
MF-IF-CDCF 0.0242* 0.0258* 0.0399* 0.0552* 0.0431* 0.0296 0.0763* 0.0775*
PARAFAC2 0.0213* 0.0226* 0.0350* 0.0476* 0.0395* 0.0267 0.0691* 0.0687*
CDTF-IF 0.0258* 0.0276* 0.0425* 0.0587* 0.0423* 0.0294 0.0758* 0.0767*
WITF 0.0267* 0.0285* 0.0451* 0.0623* 0.0484* 0.0340 0.0849* 0.0872*
WITF+WRMF 0.0271** | 0.0290** | 0.0462** | 0.0643** | 0.0486** | 0.0343** | 0.0851** | 0.0879**

Target D2
Domain TR-80% TR-50%
Method AP@5 AP@20 nDCG@5 nDCG@20 AP@5 AP@20 nDCG@5 nDCG@20
Most-Pop 0.0175% 0.0194» 0.02887 0.04241 0.02977 0.02317 0.05307 0.0591~
N-CDCF 0.0281* 0.0261* 0.0435* 0.0520* 0.0228 0.0243* 0.0380 0.0357
ME-IF 0.0320* 0.0354* 0.0528* 0.0747%* 0.0501* 0.0370* 0.0872** 0.0924**
MF-IF-CDCF 0.0240* 0.0262* 0.0397* 0.0563* 0.0380* 0.0285* 0.0675 0.0724*
PARAFAC2 0.0215* 0.0234* 0.0356* 0.0506* 0.0327* 0.0251* 0.0589* 0.0638*
CDTF-IF 0.0326* 0.0337* 0.0526* 0.0662* 0.0454* 0.0316* 0.0761* 0.0750*
WITF 0.0338* 0.0363* 0.0552* 0.0753* 0.0538* 0.0383* 0.0905* 0.0909*

WITF+WRMF 0.0343** 0.0369** 0.0556** 0.0758** 0.0542%** 0.0386** 0.0907** 0.0915*




Group-based Recommender
Systems

Hu, L., Cao, J., Xu, G., Cao, L., Gu, Z., & Cao, W. (2014, July). Deep Modeling of
Group Preferences for Group-Based Recommendation. In AAA/ (Vol. 14, pp. 1861-
1867).



Group Choices Are Joint Decision

 Human beings are of a social nature, so various kinds of group activities are
observed throughout life
* Seeing a family movie, Planning family travel

* Each member of a group may have different opinions on the same items, so the
main challenge in GRSs is to satisfy most group members with diverse
preferences.

* This is not achieved through an individual-based recommendation method.
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o S \ know | |l h
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Profile Aggregation

* Group Preference Aggregation (GPA)

* GPA aggregates all members’ ratings into a group profile, and then any
individual-based CF approach can be used if it regards groups as virtual
individual users.

* |Individual Preference Aggregation (IPA)

* |PA predicts the individual ratings over candidate items, and then aggregates
the predicted ratings of members within a group via predefined strategies to
represent group ratings.



Aggregation Strategies

* Average and Least Misery are the two most prevalent strategies
(Masthoff 2011)

Average strategy recommends items with the highest average ratings over all
members.

Least misery strategy assumes a group tends to be as happy as its least
happy member.



Modeling Features in Group-based Decision

 Member Features: these model the individual preference of a user
when she/he makes choices as a group member, which can be
regarded as a mixture of Collective Features and Individual Features.

* Collective Features: these represent compromised preferences of a
group, which are shared among all members and can be
disentangled from the Member Features.

* Individual Features: these represent independent individual-specific
preference, which can be disentangled from the Member Features
w.r.t. this user.

Member Features




Disentangling Collective and Individual
Features

* Each group choice can be regarded as a joint decision by all members

(XXXX] DN

Collective Features
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Individual Features
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(b) GRBM
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Member|Features
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00000

User Profile

GRBM to learn
member features
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Collective Features
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Individual Features
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Member Features U

C-RBM disentangles
collective features and
individual features from
member features



Comprehensive Representation of Group
Preferences

* A dual-wing RBM is placed on the top of DBN, which jointly models
the group choices and collective features to learn the comprehensive
features of group preference

DW-RBM to jointly model group profile
(data) and collective features




CAMRa2011 Dataset

e CAMRa2011 dataset containing the movie watching records of
households and the ratings on each watched movie given by some
group members.

 The dataset for track 1 of CAMRa2011 has 290 households with a
total of 602 users who gave ratings (on a scale 1~100) over 7,740
movies.



Training and Testing Data

e Statistics of the evaluation data

e | e e [
145,069 0.0313
290 114,783 0.0510
286 2,139 /




Results

MAP and mean AUC of all comparative models with different strategies

MAP AUC

Model/Strategy | No Strategy | Average | Least Misery | No Strategy | Average | Least Misery
kNN (k=5) 0.1595 N/A N/A 0.9367 N/A N/A

0.0628 0.9297
MF-GPA N/A 0.1341 N/A 0.9535

0.1617 0.9503
MEF-IPA N/A 0.1952 N/A 0.9635

0.2801 0.9810
OCMF 0.2811 0.2858 0.9811 0.9813

0.2951 0.9782
OCRBM 0.2823 0.2922 0.9761 0.9778

0.3258 0.9897
DLGR 0.3236 0.3252 0.9880 0.9892




Group with Different Number of Members

* A group with more members implies more different preferences, so it is harder to find
recommendations satisfying all members.

* Each household may contain 2~¥4 members in this dataset. We additionally evaluated the MAP
w.r.t. 2-member households and the 2*-member (>2) households under Average and Least Misery
strategies.

Strategy: Average Strategy: Least Misery
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More Recent Work on non-II1D
recommender systems

* Trong Dinh Thac Do and Longbing Cao. Gamma-Poisson Dynamic Matrix Factorization
Embedded with Metadata Influence, NIPS2018

* CoupledCF: Learning Explicit and Implicit User-item Couplings in Recommendation for Deep
Collaborative Filtering, I/CAI2018

* Interpretable Recommendation via Attraction Modeling: Learning Multilevel Attractiveness

over Multimodal Movie Contents, IJCAI2018
* Attention-based Transactional Context Embedding for Next-ltem Recommendation. AAAI2018



Deep Representation with
Explicit and Implicit Feature Couplings

* Learn explicit user-product couplings | User-item coupling _| )
by metadata-enabled CNN e e Thm)| ~ USersdense
i Z=7— | vector U
* Build a deep collaborative filter model 1 woms | |tem’s dense
to learn the latent user-product S vector V

Sl fa)halfa] .. |fin .
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* Integrate both local and global user-
product interactions components
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Attraction Modeling:

Learning Multilevel Attractiveness over Multimodal Content

¢ One multilevel neural model on the movie
story to capture

¢ Word-level attraction: e.g., some characters, some
place

¢ Sentence-level attraction: e.g., some interesting
plot

e Story-level attraction: e.g., like the movie to what
extent

* Another multilevel neural model on the
cast to capture
¢ Member-level attraction: e.g., a fan of some actor

*  Cast-level attraction: e.g., attracted by the movie
to what extent

Released Movies New Movies

[~—CENTROID| |
+CTR
~-CWER

MLMA-C X
0.1 —~MLMA-S |1 0.1
—MLAM

) - - - - - - ) - - - - -
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
@K @K

Interpretable Recommendation via Attraction
Modeling: Learning Multilevel Attractiveness over
Multimodal Movie Contents, IJCAI2018
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Election is a 1999 American comedy-drama film directed and written by Alexander Payne and adapted by him and Jim

Sentence | Taylor from Tom Perrotta's 1998 novel of the same title. The plot revolses around a high school clection and satiizes both suburban high shiool
life and politis.
aractiveness 5
User The film received an Academy Award nomination for Best
156 Adapted Screenplay, a Golden Globe nomination for Witherspoon in the Best Actress category, and the Independent Spirit Award for Best Film in 1999.
Word level N comedy-drs
attractiveness | Election American comedy-drama
ast member
Castmember |- 4 1 ander Payne, Recse Witherspoon, Matthew Broderick,
Election is a 1999 American comedy-drama film directed and written by Alexander Payne and adapted by him and Jim Taylor from Tom Perrotta's 1998
novel of the same title.
Sentence When Tracy qualifies
to run for class president, McAllister believes she does not deserve the title and tries his best to stop her from winning.
User | activeness The film received an Academy Award nomination for Best Adapted Screenplay, a Golden Globe
2163 nomination for Witherspoon in the Best Actress category, and the Independent Spirit Award for Best Film in 1999.
Word level Award nomination fo: Best nomination Best

attractiveness

Cast member

Award

Alexander Payne, Reese Witherspoon, Matthew Broderick,

Best

Statistical attractiveness on movie Election (1999) w.r.t. sentences, words in the
most attractive sentences and cast members. The larger size and deeper color of
font denote the larger attractiveness weight is assigned.



Dynamic, Continuous (Next-item), Personalized
Recommendations within Session & Context

e Persona I ized recommendations Table 3: Accuracy comparisons on Tafang
Model REC@10 REC@50 MRR
* With user/product sessions as context PBRS 0.0307 00307  0.0133
FPMC 0.0191 0.0263 0.0190
. . PRME 0.0212 0.0305 0.0102
* Behavior-based recommendations GRU4Rec ~ 0.0628  0.0907  0.0271
H ATEM 0.1089 0.2016 0.0347
* Continuous (next-product/moment/ i G GIUE  Boeh
mterest/etc.) recommendations
MCAN on ICAI-1S. MCAN on Tatang
Target item output ‘<7> &) -~ Cﬁ) (7:: ’ '
A o8 08
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I 306 gﬂe
Context embedding e. | = - = -~
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ict.::l:n‘::@:nnll::!idingw Iy ‘ ‘ - ’ | ; ‘ ]’Jl‘OLlChCS.
‘ R
w

<

, l
s |[@OOQ [-
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Figure 1: The ATEM architecture, which first learns item
embeddings and then integrates them into the context em-
bedding for target item prediction, where A’ represents the
attention model.






Non-IID Outlier Detection
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Background and Non-IID Outliers



Multidimensional Data

 Multidimensional data

* Data objects are characterized by two or more features

* Information table
* Rows -- data objects
e Columns -- features

agegrp
0.888889
0.888889
0.333333
0.7777178
0.888889
0.111111
0.222222
0.333333
0.222222
0.222222

density Hispanic

0.333333
0.333333
0.333333
0.333333
0
0.333333
0.666667
1
0.666667
1

0

= o O e, o O O O O

bmi
0.333333

0.333333
0
0.333333
0

count
0.000517
0.000259
0.000517
0

o o o o o O

cancer



Traditional Outlier Detection

* Statistical/probabilistic-based approach
e Statistical test-based —> deviation from distribution
* Depth-based —> data depth
* Deviation-based —> sensitivity or uncertainty

* Proximity-based approach

» Distance-based —> nearest neighbor distances
* Density-based —> local density
* Clustering-based —> distance to cluster centers

Kriegel, H. P., Kroger, P., & Zimek, A. (2010). Outlier detection techniques. Tutorial at KDD10.
Aggarwal, C. C. (2017). Outlier analysis. Springer.



The [ID Assumption

* Common assumptions

 Values/features/objects from
homogeneous distributions,

bmi count cancer
0.333333 0.000517 0

_ 0.888889\ 0.333337% 0 0 0.000259 0O
mechanisms 0.333333 | 0.33333 0 1 0.000517 O
0.777778 10333333 0 0 0 0

e They are independent to each other| 9883889 | O 0 0 0 0
S S 0.111111 |0.333333 0 0 0 0

* E.g., implicit IID assumption in 0222722 | 0.66666 1 0333333 0 0
Euclidean distance 0333333 1 0 0 0 0
0.66666 0 0.333333 0 0

1 1 0 0 0




Non-IID Real-life Data

Couplings

KNOW THE DIABETES WARNING SIGNS!

Frequent
urination i

' Ez: . }
Lack of Excessive
energy ‘ A thirst *-

Source: http://www.diabeticrockstar.com
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True positive rate

IID vs. Non-IID Outlier Detection — example

—kNN with Euclidean

—kNN with Standardized Euclidean

03 04 05 06 07
False positive rate

* Data: Mammography
e Euclidean - AUC: 0.81
e Standardized Euclidean - AUC: 0.86

6.17%
improvement




The Mammography Data Set
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Non-|ID Value-based Approach

Guansong Pang, Longbing Cao, Ling Chen. Identifying Outliers in Complex
Categorical Data by Modeling Feature Value Couplings. IJCAI16.



Motivation

* Value heterogeneity

* Semantic differs in different
contexts

Values of the same frequency
may indicate different
outlierness

The outlierness of a value is

dependent on its accompany
values

 Value coupling — Guilt-by-
association
* “A man is known by the company
he keeps”

* Homophily couplings in outlying
behaviors (values)

* Concurrent outlying behaviors

* E.g., thirsty, weight loss, dryness,
urination in diabetes

* E.g., Feel alienated, violence against
the society is not immoral, etc. in
terrorist characteristics



Our Framework

* Learning value outlierness from data with non-IID values

Data-driven CUOT Framework

Intra-feature
Outlier Factor

Applications

Data

Objects Inter-feature
Outlier Factor

Model for
Estimating Value
Qutlier Score

Feature Weighting
and Selection

v

Outlying Object
Detection




CBRW: Intra-feature QOutlier Factor

* Intra-feature outlier factor for addressing heterogeneity
* A value of the same frequency in different features can have very different semantic
* Given avalue v € dom(f)
o(v) = %[base(m) + dev(v)]
where m is the mode in the feature f, base(m) = 1 — freq(m),

_ freq(m)—freq(v)
dev(v) = rea )




CBRW: Inter-feature Qutlier Factor

* Inter-feature outlier factor capturing the homophily value couplings

* Concurrent rare values have high mutual conditional probabilities

freq(u,v)  freq(w,v)

.
Freq) ' freq) 1, Vu,w € V\v

qy = [n(wv), ...n(w,v)]'= |

where Vis the set of all values.



CBRW: Integrating the Two Outlier Factors

* Learning value outlierness from
data with non-IID values

* Map two outlier factors into a value- *—j @
value graph . -
6(va22)
: . /'1 (vaa, “i
 Stationary probabilities of random e
walks at value nodes as value : __
outlierness -

8(v22)M(v32,v22)
(V22 M (V32, V22) + (V11N (Y32, v11)

Wy, (V32,V22) =

8(v11)N(v32,v11)
6 (V22 )M (V32, V22) + 8 (V11N (V32, V11)

Wy (v32,v11) =



Analysis of CBRW

» Convergence guaranteed

1

1 I @Wbﬂ't
V|

T = (1 —a)

* Fast convergence rate
* Small graph dimeter, e.g., 2
* Large graph density or Cheeger constant



Performance Evaluation |I: Direct Outlier
Detection Performance

Data CBRW CBRWie CBRWia ‘ MarP*™ MarP FPOF COMP FORE
BM 0.6287 0.6566 0.5999 0.5778 0.5584 0.5466 0.6267 0.5762
Census 0.6678 0.6579 0.6832 0.6033 0.5899 0.6148 0.6352 0.5378
AlD362 0.6640 0.6324 0.6034 0.6152  0.6270 o 0.6480 0.6485
w7a 0.6484 0.7338 0.4453 0.4565  0.4723 o 0.5683  0.4053
CMC 0.6339 0.6323 0.6179 0.5623 0.5417 0.5614 05669 0.5746
APAS 0.8190 0.8624 0.8739 0.6208 0.6193 o 0.6554  0.4792
CelebA 0.8462 0.9108 0.7135 0.7352 0.7358 0.7380 0.7572 0.6797
Chess 0.7897 0.4058 0.7766 0.6854 0.6447 0.6160 0.6387 0.6124
AD 0.7348 0.8270 0.7250 0.7033 0.7033 0 . 0.7084
SF 0.8812 0.8833 0.8867 0.8469 0.8446 0.8556 0.8526 0.7865
Probe 0.9906 0.9907 0.9434 0.9795 0.9800 0.9867 0.9790 0.9762
U2R 0.9651 0.9640 0.8817 0.8848 0.8848 0.9156 0.9893 0.9781
LINK 0.9976 0.9976 0.9976 0.9977 0.9977 0.9978 0.9973 0.9917
R10 0.9905 0.9903 0.9823 0.9866  0.9866 o 0.9866 0.9796
cT 0.9703 0.9703 0.9388 0.9770 0.9773 0.9772 09772 0.9364
Avg.(Top-10) 0.7314 0.7202 0.6925 0.6407 0.6337 0.6554 0.6610 0.6009
Avg.(All) 0.8152 0.8077 0.7779 0.7488 0.7442 0.7810 0.7770 0.7247
CBRW vs.  0.7959 0.0392 0.0012 0.0008 0.0115 0.0147 0.0040

p-value CBRWie vs.  0.4225 0.0969 0.0592 0.4316 0.3167 0.0446
CBRWia vs. | 0.1460 0.1223 0.2886 0.8490 0.0979




Performance Evaluation II: Outlying Feature
Selection Performance

Census aPascal

(8] —CBRW_OD
D 0.5¢.4 © CBRW_FS + CBRW_OD |
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Performance Evaluation Ill: Convergence

Analysis

* Characteristics of value graphs

* Small graph dimeter

* Large graph density

Data Diameter Coefficient
Census 2 0.76
Chess 2 0.79
U2R 2 0.80
SF 2 0.81
Probe 2 0.82
BM 2 0.85
LINK 2 0.86
CT 2 0.87
CMC 2 0.89
APAS 2 0.90
R10 2 0.91
AID362 2 0.92
wTa 2 0.93
CelebA 2 0.99
AD o o




Performance Evaluation Ill: Convergence
Analysis
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Conclusions

* Learning value outlierness from data with non-IID values
* Intra-feature and inter-feature outlier factors

* Different applications
 Direct outlier detection: Significantly outperform other detectors in complex data

* Feature selection: Substantially improve AUC and efficiency performance of
existing OD methods



Non-IID Value-to-Feature-based
Approach |

Guansong Pang, Longbing Cao, Ling Chen, Huan Liu. Unsupervised Feature
Selection for Outlier Detection by Modelling Hierarchical Value-Feature Couplings.
IEEE ICDM 2016, pp. 410-419.



Motivation

* Feature selection for outlier detection
e QOutliers are masked as normal objects by noisy features
» Useless features downgrade detection efficiency

* Challenges
* Unsupervised nature — no class labels
* Complex feature interactions



Our Framework

* Two-way feature interactions
* Estimate feature outlierness by modeling value-to-feature couplings

| value value value-to-feature
Categorical | i i m i i ‘
g Interactions VCA outlierness Value Graph interactions FCA

Data | U

candidate subset !
(update) feature
: outlierness

selected subset graph

tput
Feature *____(_9}1_ pu ) Subset \ property EEadnre Graoh
Subset Search




DSFS: Value and Feature Graph Construction

f, f3
N 70
NV
£ Lf; ;-.  ' B , §
Linear combination of AN 2
all associated value = ———
pairs from every two f; fs
features
Capturing concurrent rare values Linear value-to-feature interaction

Two-way feature interactions



DSFS: Objective Function

* Feature selection objective function

1 (f gl
g‘;‘;aZZ"‘ (f. ")

fesSf'es

where A* is the weighted adjacent matrix of feature graph

* It is equivalent to finding the densest subgraph

* It can be solved by a linear-time greedy search method with a 2-
approximation guarantee



DSFS: Dense Feature Subgraph Search
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From Gionis and Tsourakakis. DSDTutorial at KDD15



DSFS: The Algorithm

Input: X" - data objects
Output: S - the feature subset selected
Initialise A as a |V| x |V| matrix
A(v, V') « g(v,V'), Vv,V €V
Initialise A* as a |F| x |F| matrix
A*(f,f") « h(f,f"), Vf,.f' e F
Set § «+— F and s < den(A*)
for i=1to D do
Find f that has the smallest weighted degree in A*
F «+ F \ f and update A*
S < F and s < den(A*) if s < den(A*)
end for
. return S

e A A~

L
= O



Performance Evaluation I: Improving AUC

Performance

Data Set Acronym Lqps  Kpdn N D D’ RED
BankMarketing BM 90% 0% 41188 10 4 60%
aPascal - 81% 0% 12695 64 20 69%
Sylva - 78% 0% 14395 87 66 24%
Census - 58% 0% 299285 33 10 70%
CelebA - 49% 4% 202599 39 34 13%
CMC - 38% 4% 1473 8 5 38%
CoverType CT 34%  22% 581012 44 5 89%%
Chess - 33% 0% 28056 6 4 33%
U2R - 17% 7% 60821 6 3 50%
SolarFlare SF 0% 0% 1066 11 8 27%
Optdigits DIGIT 8% 26% 601 64 46 28%
Mushroom MRM 5% 2% 4429 22 13 41%
Advertisements AD 5% 8% 3279 1555 49 97%
Probe - 0% 1% 64759 6 2 67%
Linkage LINK 0% 0% 5749132 5 4 20%
Avg. 34% 10% 470986 131 18 48%

e 15 real-world data sets are used
e Remove 13%-97% features

* On average, 48% features are
eliminated



Performance Evaluation I: Improving AUC
Performance

AUC Performance

MarP MarP* IMP | COMP COMP* IMP | FPOF FPOF* IMP
BM 0.56 059 5% 0.63 0.62 2% | 0.55 058 5%
aPascal 0.62 0.88 42% | 0.66 0.88 33% o 0.88 o
Sylva 096 096 0% 095 0.96 1% o o o
Census 0.59 0.69 17% | 0.64 0.71 11% | 0.61 0.72 18%
CelebA 0.74 0.74 0% 0.76  0.76 0% 0.74  0.75 1%
CMC 054 066 22% | 057 0.66 16% | 0.56 0.65 16%
CT 098 097 -1% | 098 0.97 -1% | 098 097 -1%
Chess 0.64 0.64 0% 0.64 0.63 2% | 0.62 0.61 -2%
U2R 0.8 092 5% 099 0.99 0% 092 097 5%
SF 084 085 1% 0.85 0.86 1% 086 086 0%
DIGIT 095 095 0% 097 097 0% 096 094 2%
MRM 089 0.89 0% 093 094 1% 091 091 0%
AD 070 0.74 6% ° 0.75 . o 0.74 o
Probe 098 098 0% 098 0.98 0% 099 098 -1%
LINK 1.00 1.00 0% 1.00  1.00 0% 1.00  1.00 0%

Avg.

6%

4%

3%

3%-6% improvement to three
different types of outlier
detectors



Performance Evaluation II: Reducing Runtime

Runtime (s)

MarP MarP* SU | COMP COMP* SU | FPOF FPOF* SU
BM 017 0.15 1 21246 17043 1 0.85 0.57 1
aPascal 031 0.12 3 | 45136 41.00 11 o 53.29 o
Sylva 021 020 1 1137.07 498.59 2 o o o
Census 1.62 051 3 18174.49 12878.14 | 30790.78  75.23 409
CelebA 0.89 0.82 | 1647.47 1169.27 1 159377.51 50188.65 3 May gain up to six
CMC 0.4 001 11 | 514 2.42 2 | 010 0.06 2
CT 304 036 9 | 391433 34198 11 | 41001655 1.09 377547 orders of
Chess  0.12 0.08 1 95.35 4930 2 | 042 0.18 2 magnitude faster
U2R 028 0.13 2 | 31895 25528 | 0.39 0.22 2
SF 0.02 0.01 1 6.33 4.40 1 0.39 0.09 4
DIGIT 0.04 003 1 217.10 11151 2 10196.85  31.99 319
MRM 007 007 1 4872 3218 2 19.32 2.70 7
AD 0.85 0.10 9 ° 126.35 o o 54088.52 o
Probe 028 0.11 3 | 576.08 456.00 | 0.47 0.20 2
LINK 274 227 | 6365.26 5203.67 1 23.56 17.93 1
Avg. 3 3 31525




Conclusions

* A novel and flexible framework is introduced for outlying feature
selection

* The instance DSFS is parameter-free and retains 2-approximation to
the optimum
* Remove about 50% features while achieve 3-6% AUC improvements
* Perform comparably well even when filtering out about 90% features
* Two to six orders of magnitude speedup
e Good scalability: linear w.r.t. data size and quadratic w.r.t. dimensionality



Non-IID Value-to-Feature-based
Approach |l

Guansong Pang, Longbing Cao, Ling Chen, Huan Liu. Learning Homophily Couplings
from Non-IID Data for Joint Feature Selection and Noise-Resilient Outlier Detection.

lJCAI 2017.



Motivation (1/2)

e Qutliers are masked by noisy features

o | caaion |income | cheat
yes

1 master low
2 master medium no
3 master high no
4 master medium no
5 master high no
6 PhD high no
7 bachelor high no
NoiIsy Rele!/a nt
features features



Motivation (2/2)
* Existing solutions: subspace/feature selection + OD

» Subspace/feature selection is independent from OD
* Noisy features bias the subspace/feature search
* Not optimal w.r.t. subsequent OD method

———

e Qur solution: Simultaneous feature selection and outlier detection
for this joint optimization



Our WrapperOD Framework

Wrapper approach for joint optimization of feature selection and OD

Searching the Best S Based on Ry,

Outlier Scoring Function ¢¢

Candidate M Optimal
Data Set X Subset S Ranking Ry, Ranking Ry
N

| | (
Subsets i[ Feature J [ Outlier JESUbSEtSA Optimal Outlier

Challenge 1: how to ensure the outlier scoring efficacy
Challenge 2: how to evaluate the outlier ranking without class labels



The WrapperOD Instance: HOUR Scoring
Function (1/3)

* The scoring function should at least be
* Sufficiently resilient to noisy features
* Very efficient

* Homophily couplings between outlying values

Concurrent Randomly co-

Outlying occurring noisy
behaviors behaviors




The WrapperOD Instance: HOUR Scoring
Function (2/3)

Simplified CBRW:
8(V22)n(V32,V23) — 6(v32)6(v;3)

Leading to random walks on

undirected value graph
@ * Efficient closed-form solution

o 2uen, 9(v)d(u)
T(V) o ZVEV ZUENV 5(V)6(U)

/ a f(\lsz z)
A y L

/
\ /
\ /



The WrapperOD Instance: HOUR Scoring
Function (3/3)

* Homophily coupling learning — stage |

_ B Zue.ﬁu’v d(v)d(u)
j (V) B ZVEV ZUEA{'V rj(v}(i([j)

* Homophily coupling learning — stage Il

H(V) = S pen, p(u. V)7 (1)



The WrapperOD Instance: HOUR Outlier
Ranking Quality Evaluation

* Average outlierness margin between top-k objects and the rest of
objects

A 1 . .
J(Rps. k) = = — [0s(x) — os(x")]
S| KIS 24

where x’ is the data object ranked in the median position in the rest of
(N - k) objects

Recursive backward feature elimination is used for
generating the feature subset S



The WrapperOD Instance: HOUR

Algorithm 1 HOUR(X, k)

Input: X - data objects, k& - the number of targeted outliers
Output R - an outlier ranking of objects, S - a feature subset
P(u )(—ZueN p(u, E)T( ),Yv eV
Compute or(x), Ve € X
< ](Ro}- k)
while |F| > 0do
for i = 1to|F|do
Compute ¢z ¢, (), Ve € X
Compute J; (R, ., k)
end for
Find feature f; with the largest .J; (H" k)
10:  F < F\ fi and update ¢ ( ) for all v  contained in F
11:  if Ji(R},.k) > r then
12: R(—R’,S<—}"and T‘(—J/j_(R’;é}_.k)
13: end if
14: end while
15: return Rand S

¢F>




Performance Evaluation |: Comparing to
State-of-the-art Detectors

AUC

PQn

Data

N |7

|S|(v) fnl

HOUR CBRW COMP FPOF ‘ HOUR CBRW

COMP

FPOF

SylvaA
BM
AlID362
APAS
SylvaP
Census
CelebA
CUP14
Alcohol
CMC
CT
Chess
Turkiye
Credit
Probe

14,395 172
41,188 10
4,279 114
12,695 64
14,395 87
299,285 33
202,599 39
619,326 7
1,044 32
1,473 8
581,01244
28,056 6
5,820 32
30,000 9
64,759 6

16(91%) 91%
5(50%) 90%
8(93%) 86%
13(80%) 81%
15(83%) 78%
3(91%) 58%
12(69%) 49%
3(57%) 43%
38%
38%
34%
33%
(34%) 25%
33%) 11%
67%) 0%

0.9829 0.9353
0.6939 0.6287

0.5147 0.6640 0.6480

0.9065 0.8190
0.9725 0.9715

0.4867 0.6678 0.6352

0.8879 0.8462
0.9833 0.9420
0.9365 0.9254
0.6647 0.6339
0.9688 0.9703
0.8507 0.7897
0.5256 0.5116
0.7204 0.5804

0.9661 0.9906 0.9790

NA
0.5466
NA
NA
NA
0.6148
0.7380
0.6041

0.8855
0.6267

0.6554
0.9537

0.7572
0.9398
0.8919 0.5468
0.5669 0.5614
0.9772 0.9770
0.6387 0.6160
0.5101 0.4746
0.6543 0.6428
0.9867

0.7483 0.5914
0.3265 0.2474
0.0833 0.0500
0.0000 0.0000
0.6907 0.6151
0.0616 0.0677
0.2085 0.1748
0.6730 0.2671
0.3889 0.3333
0.0345 0.0345
0.0499 0.0386
0.0000 0.0000
0.0776 0.0746
0.4875 0.2215

0.3770
0.2565
0.0167
0.0000
0.5700
0.0675
0.1533
0.2671
0.3889
0.0345
0.0688
0.0000
0.0687
0.3502

0.8440 0.8579 0.7928

NA
0.1369
NA

NA

NA
0.0637
0.1256
0.0000
0.0556
0.1034
0.0644
0.0000
0.0597
0.3333
0.8548

Average 128,022 44

—_]

8(69%) 50%

p-value

0.8041 0.7918
0.1876

0.7546
0.0730

0.6644
0.0322

0.3116 0.2383
0.0068

0.2275
0.0068

0.1634
0.1055




Performance Evaluation II: Comparing to
State-of-the-art FS + Detectors

AUC
Data HOUR CBRWT CBRW* COMPT COMP*
SylvaA™ [ 0.9829 0.8793 0.9381 0.8726 0.8858
BM 0.6939 0.6104 0.6114 0.6239 0.6239
AID362 | 0.5147 0.4659 0.6518 0.4982 0.6342
APAS 0.9065 0.6621 0.8807 0.6532 0.8771
SylvaP | 0.9725 0.9582 0.9707 0.9307 0.9628
Census | 0.4867 0.4844 0.6999 0.4841 0.7135
CelebA | 0.8879 0.8865 0.8502 0.8855 0.7594
CUPI4 | 0.9833 0.9821 0.9358 0.9821 0.9618
Alcohol | 0.9365 0.9264 0.9294 0.8919 0.8595
CMC 0.6647 0.6366 0.6444 0.6475 0.6586
CT 0.9688 0.9192 0.9673 0.9187 0.9670
Chess 0.8507 0.7268 0.7649 0.7529 0.6305
Turkiye | 0.5256 0.5161 0.5108 0.5145 0.5119
Credit 0.7204 0.5712 0.5712 0.6566 0.6566
Probe 0.9661 0.9591 0.9591 0.9794 0.9794
Average | 0.8041 0.7456 0.7924 0.7528 0.7788
p-value - 0.0001 0.0730 0.0006 0.1070




Performance Evaluation IlI: Sensitivity Test

0 Census (Outlier%=6.20%) 0 CelebA (Outlier%=2.24%)
So S
- 0.6 -
— 0.85 :
0.01% 0.05% 0.1% 0.5% 1.0% 0.01% 0. 05% 0. 1% 0.5% 1.0%
k k
0.99 CUP14 (Outlier%=5.93%) ; CT (Outlier%=0.47%)
O %—E—E—E—? O
> 0.9 -]
< <
0.97 ' 0.9

0.01% 0.05% 0.1% 0.5% 1.0% 0.01% 0. 05% 0. 1% 0.5% 1.0%
k k



Performance Evaluation IV: Scalability Test

10° ! HOUR

51
CBRW 10
w FPOF | o
Q COMP Q
E E
[= =
z T
o0l
10

16000 256000 4096000 40 80 160 320
Data Size Data Dimensionality



Conclusions

* This the first wrapper approach for outlier detection

* The simultaneous optimization scheme enables HOUR to work well in
very noisy scenarios
 Significantly better top-k outlier detection

* Good stability and scalability

* Source code will be available at
https://sites.google.com/site/gspangsite/sourcecode



Non-IID Statistical Learning

PAKDD2019 Tutorial on Large-scale statistical learning

www.datasciences.org



Large-scale, sparse, multi-source data: Non-

11D
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Bayesian probabilistic models

In Equation:

X18)P(6) P(X10)P(0)

_ P _
PLEIA) = P(X) - [ P(X|6)P(0)d6
In Plain English:

Likelihood *Prior

Evidence

Posterior =



Bayesian probabilistic models

* X={Xq, X,, ..., X} represents the data and 08 represents the model
parameters.

* It is assumed that {x.} are independent and identically distributed
(i.i.d) conditioning on the prior 0.

P(X16) = [Ti=1 P(xil6).

* The data in X is exchangeable.



Hierarchical priors

* One may construct a complex prior distribution using a hierarchy
of simple distributions as

P(0) = / e / P(O|a:)P(at|at—1) ... Plar)day ... day

* For example: One can construct a hierarchy of Gamma
distribution.

E.g., Gamma-Gamma-Gamma-Poisson distribution Compound models



Large scale Bayesian inference

* Sampling methods:

e Markov Chain Monte Carlo (MCMC):
* Metropolis-Hastings Sampling.
* Gibbs Sampling

e Optimization methods
 Variational Inference (VI)
» Stochastic Variational Inference (SVI)



Stochastic variational inference (SVI)

* Model

o .—»R,B

Y o\
Josm 18

in — <n1:J

plx,z,p|a) = p(B|a)

* Our goal: approximate the posterior

p(B.z|x)

==

:])(-\'n-. n | B)

1

* Locally independence P (Xn, Zn |"‘—"‘- Z—n, P, &) = p(xn,zn | B, o).

https://www.cs.ubc.ca/labs/Ici/mlrg/slides/SVI.pdf



Stochastic variational inference (SVI)

* Conjugacy relation between the global variable and local variable

P(Xn,2a|B) = h(xn,za)exp{ BT’(-"m;n) —ag(P)}-

* Prior of global variable is also exnonential
p(B) = h(B)exp{a.'r(B) — ag(cr)}

* Posterior

" N — [)(.\',:~|3)
PEPI) = Ttz Bydaap

https://www.cs.ubc.ca/labs/Ici/mlrg/slides/SVI.pdf



Stochastic variational inference (SVI)

* ELBO
log p(x) = log/p(x..:. B)dzdf3

=log [ p(x.z, 3)3& g%didﬁ

- p(x,z,P)
- 1oz (E, [ )
> E4[log p(x,z,B)] — Eg[logg(z, B)]

= L(q).

https://www.cs.ubc.ca/labs/Ici/mlrg/slides/SVI.pdf



Copula Mixed-Membership
Stochastic Blockmodel

Fan, X., Da Xu, R. Y., & Cao, L. (2016). Copula Mixed-Membership Stochastic
Blockmodel. In IJCAI (pp. 1462-1468).



Motivation

* Group members may have higher correlated interactions towards the
ones within the same group.

* For instance, in a company, IT support team members tend to co-interact with
each other more than with employees of other departments.

* In reality, within a social networking context, it is important to
incorporate group member interactions (here called intra-group
correlations) into the modeling of membership indicators.



Our Model

* Mixed Membership Stochastic
Model (MMSB) which focuses on
detecting overlapping communities
of the complex networks.

Figure 1: Clayton Copula (2) and Gaussian Copula (0.9) vi-
sualization.

* Further coupling learning of
members in the same group using H(z,vy) = C(F(z),G(y))

Copula.
h(z,y) = c(F(x),.G(y)) - f(x)g(y)



The Graphical Model

Figure 2: Graphical model of Copula MMSB

Cl: B~ GEM(%)
C2: {m;}y ~ DP(a - B)

C3- (wij, vij) ~ Copula(f), gij = 1;
o ll,’j.l‘,’j NU(Ol) g'i-j = 1{il.

Cd: sij = I (uiz), rij = 117" (v35)
C5: By ~ Beta(A1, A\2),Vk,I;
C6: ey =~ Bm'no-ulli(BSij_,.i.).

J



Empirical Results

Table 3: Model Performance (Mean = Standard Deviation) on Real-world Datasets.

Dataset Train error Test error Test log likelihood AUC
IRM 0.0317 = 0.0004 0.0423 F 0.0014 —135.0467  7.3816 0.8001 F 0.0162
LFRM 0.0473 = 0.0794 0.0540 = 0.0735 —105.2166 F 179.5505 0.9348  0.1667
NIPS MMSB 0.0132 = 0.0042 0.0301  0.0064 —86.2134 7 10.1258 0.9524 = 0.0215
co-author iMMM 0.0061 = 0.0019 0.0253 = 0.0035 —83.4264 7 9.4293 0.9574 = 0.0155
cMMSB™ 0.0066 = 0.0038 0.0231 I 0.0043 —83.4261 = 9.4280 0.9569 = 0.0159
cMMSB"" 0.0097 = 0.0047 0.0240 F 0.0065 —83.4257 - 9.4292  0.9581 F 0.0153
IRM 0.0627 = 0.0002 0.0665 F 0.0004 —133.8037 F£1.1269 0.8261 F 0.0047
LFRM 0.0397 = 0.0017 0.0629 + 0.0037 —143.6067 = 10.0592 0.8520 F 0.0179
MIT MMSB 0.0263 =+ 0.0105 0.0716 = 0.0043 —129.4354 F 7.6549 0.8561 = 0.0176
reality iMMM 0.0297 = 0.0055 0.0625 = 0.0015 —126.7R76 3 3.4774 0.8617  0.0124
NMDR 0.0386 = 0.0040 0.0668 = 0.0013 —139.5227 3 2.9371 0.8569  0.0138
cMMSB™ | 0.0246 F 0.0016 0.0489 = 0.0016 —125.3876 = 3.2680 0.8794 1 0.0159
cMMSB"" 0.0283 = 0.0035 0.0438 T 0.0015 —123.3876 - 3.12504 0.8738 T 0.0364
IRM 0.0987 = 0.0003 0.1046 = 0.0012 —201.7912 3= 3.3500 0.7056 = 0.0167
LFRM 0.0566 = 0.0024 0.1051 = 0.0064 —222.5024 F 16.1985 0.8170 = 0.L0197
Lazega MMSB 0.0391 = 0.0071 0.0913 = 0.0030 —212.1256  3.2145 0.7980 = 0.0102
lawtirm iMMM 0.0487  0.0068 0.1096 £ 0.0026 —202.7148 = 5.3076 0.8074 F 0.0141
NMDR 0.0640 F 0.0055 0.1133 = 0.0018 —207.T188 32 3.4754 0.8285 3 0.0114
cMMSB™ | 0.0246 = 0.0050 0.1023 = 0.0056 —201.0154 F 5.2167 0.8273 F 0.0148
cMMSB"" 0.0276 = 0.0043 0.1143 = 0.0019 —204.0289 F 9.5460 0.8215  0.0167




Incorporating Node Information
into BNP Models

Fan, X., Da Xu, R. Y., Cao, L., & Song, Y. (2017). Learning nonparametric relational
models by conjugately incorporating node information in a network. IEEE
transactions on cybernetics, 47(3), 589-599.




Motivation

* The metadata (e.g., the node information in the social network) may
affect the relations between nodes (e.g., the friendship).



MMSB and LFRM Models

Y8

! g
8iq -+ Tij/ %

walo
,@

Fig. 1. Graphical model for the MMSB and the LFRM. Here, 55 and rj; in
the rectangular nodes represent the latent variable in MMSB. and 7; and
are in the LFRM context.




Node-Information Involved Mixed-
Membership Model: niMM, niLF

R

The generative process for the niMM model is defined as
follows (w.l.o.g. Vi,j=1,...,n,k € NT).
LE] (I).’.
'3 Cl: Yk ~ Beta(l, []; r},,r}\. ).

8ij I-'II..Z'E rii/Z; C2: mg=vVi l_—lfz_ll(l — Y. |
C3:  sij ~ Multi(m;), rij ~ Multi(rj).
\{:"1/ )

C4: e~ Bcrnoulli(B_,-U,ﬁ).

Fig. 2. Generative model for the niMM and nilLF models.



Empirical Results

TABLE 1II

PERFORMAMNCE ON REAL-WORLD DATA SETS (MEAN T STANDARD DEVIATION)

Datasets

Maodels

Training ermor

Testing crror

T'tﬂting Ing likelithood

AllC

Lazega

IRM
LFEM
inIMIM
MNMDRE
nifi™d

nilLF
cnilvii

0.0987 F (L0003
0,0566 F (L0iEq
00487 F (LODGS
(L0640 = 00055

0.0334 F 0.0056

00389 F 0.0126
0.0466 5 00092

0.1046 F 0.0012
0.1051 F 0.0064
0.1006 F 0.0026
0.1133 F 0.0018
01067 F 0.0021

0.1012 7 0.0034

1L 1 5 0.0020

—201.7912 F 3.3600
—222.5924 F 16,1985
—202.7148 F 5.3076
—207.7188 F 3.4754
—196.0503 F 4.3062
—213.5246 F 12,3249
205.0673 F 4.5321

07056 F 0.0167
0.8170 F 0.0197
0.8074 F 0.0141
0.8285 T 0.0114
0.8369 T 0.0122
0.8123 F 0.0135
0.8314 7 0.0119

Feality

IEM
LFREM
MMM
MMDIR
nilidd
ml.F
iV

0.0627 7§ 0.0002
0.0397 F 0.0017
0.0297 F 0LOD55
0.0386 F 0.0040

0.0269 F 0.0047

0.0:379 F (L0046
00553 F L0023

0.0665 + 0.0004
0.0629 F 0.0037
0.0625 F 0.0015
0.0668 F 0.0013

0.0621 F L0015

0.0732 F 0.0049
0.0641 F O.0011

133. 8047  1.1269
— 1436067 = 10.0592
—126.T876 F 3.4774
—138.5227 F 2.9371
127.7377 F 3.1313
—131.0326 F 9.4521
—1:26G,9091 F 2.6455

0.8261 F 0.0047
0.8529 F 0.0179
08617 F 0.0124
0.8569 F 0.0138
0.8507 F 0.0134

0.5645 F (L0159
0.8597 F 0,0099




Motivation

* We extend the existing benchmark models (i.e., MMSB and LFRM) to
incorporate the node information. The experimental results seem quite
promising while the node information is closely related to the link data.

e Our extension to MMSB retrieves the conjugate property during the MCMC
inference, which mixes much faster in the Markov Chain than the previous
approaches. Also, we find that in the experiments, our method converges
much earlier than the previous one.

e Our model is under the Bayesian nonparametrics setting (achieved through
the methods similar to the stick-breaking constructions), which can deal
with the problem of an unknown number of communities.



Statistical Learning of Large-scale,
Sparse and Multi-source Data
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Overview of Statistical Models for Large and
Sparse Data

 Poisson Factorization (PF)
* In matrix factorization, we decompose the rating matrix Y into the vector of
the user’s preference and item’s feature.
 Similarly, Poisson Factorization (PF) assumes the rating matrix Y follows the
Poisson distribution and can be factorized to a vector of K latent preferences
for each user and a vector of K latent features for each item.
Observations Users weight Items weight

Y - 9 X ﬂ

U x| UxK Kxl



Overview of Statistical Models for Large and
Sparse Data

e Matrix Factorization (MF):

e Users are represented by vectors of latent preferences.
* Items are represented by vectors of latent features.

* Latent user preferences and latent item features are i |
estimated based on their own distributions. :
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Poisson Factorization (PF)
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Figure 1.6: Graphical Model of Poisson Factorization (PF).

1. For each user wu:

(a) Sample latent activity &, ~ Gammal(a',a’/b').

(b) Sample latent preference 6, ~ Gammal(a,&,).
2. For each item i:

(a) Sample latent popularity 7; ~ Gamma(d,d /d').

(b) Sample latent attribute B ~ Gammal(c,n;).

3. For each user u and item 7, sample rating:

Yui ~ Poisson(>", 0urBik).



Overview of Statistical Models for Large and
Sparse Data

* Properties of PF:

* PF captures sparse factors. It is based on the way of PF compute only on
the non-missing data. Since the real-world rating data is often sparse (e.g.,
Netflix data has more than 98% missing data), this makes PF strong.

* PF models the long-tail of users and items. It is also fitted with the real-
world data in which the majority users tend to rate for the minority of
items.

* PF downweights the effect of zeros. As there are many missing values (i.e.,
zero value), this property is critical in the real-world situation.

* Fast inference with sparse matrices. Since Bayesian models strongly
depend on the inference methods, we need to have a good method to
boost the computational time of PF.



Combination of Multiple Sources of Data
- Static
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Combination of Multiple Sources of Data
- Dynamic

«
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«——» Bechavior-based linkage

nodes based on attributes |

at time t;

----- » Behavior-based linkage
attime )

=% Friendships of the nodes

.» The similarity between

S Friendships | | Behavior-based Linkages
Age  Gender Location  Education

n 34 Male SYD Master {na.ng} {na.nz}

¢ ng 35 Female SYD Master {ni.n4g} {ni.n3}

b ng 24 Female NYC Bachelor {na4}) {ni.n2}

na 25 Male SYD Bachelor {ni1.n2,ns3} {}
ny 34 Male SYD Master {n2.n4.ng } {n2.n3.na}
ne 35 Female SYD Master {ni.,n3g.nyg} {ni.ng}

to ns 24 Female NYC Bachelor {na,.ng} {ni1.ng}
14 25 Male NYC Bachelor {ni.n2,n3} ini.nz}
ns 24 Female NYC Bachelor {n.} {ns}




Statistical Learning of Large-scale,
Sparse and Multi-source Data

Trong Dinh Thac Do and Longbing Cao. Metadata-dependent Infinite Poisson
Factorization for Efficiently Modelling Sparse and Large Matrices in
Recommendation, IJCAI2018




Motivations

* User/item Sparsity:

* PFis inefficient when working with a column or row with very few
observations (corresponding to a sparse item or user) due to poor priors in
the Gamma distribution.

* Dynamics/infinity:
* Solve the challenge in automatically choosing the number of latent
components.



Metadata-integrated Poisson Factorization
(MPF)

Enrich prior using
user and item
metadata




Metadata-integrated Poisson Factorization

(MPF)

(1) For the m!" user attribute in the metadata., sample the

weight:
hiy ~ Gamma(ag, o)

(2) For the nt" item attribute, sample the weight:

hi,, ~ Gamma(~yy,v1)

(3) For each user u, sample latent behavior:

6 ~ 0ﬂ77?l71(l H h“f“u m

m

m=1

(4) For each item 7, sample latent attractiveness:

 ~ Gammal(c H ln

n=1

(1)

(2)

(3)

(4)

(5) For each component £ in the PF factorization:
(a) Sample user’s latent preference:

Our ~ Gammal(a,&,) (5)

(b) Sample item’s latent feature:

Bir. ~ Gammal(c,n;) (6)
(6) Sample rating:

Yui ~ Poisson ( Z Ouk .3i.k) (7
A.



Metadata-integrated Infinite Poisson
Factorization (MIPF)
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Metadata-integrated Infinite Poisson

Factorization (MIPF)

(1) For the m!" user attribute, sample the weight:

hiy, ~ Gamma(ag, ay) (8)
(2) For the nt" item attribute, sample the weight:

hi,, ~ Gamma(~g, 1) (9)

(3) Foreach user u(=1,..., M):
(a) Draw the user’s latent behavior:

£u ~ Gamma(ad', H hufvem) (10)
(b) For k(= 1..00), draw stick-breaking proportion:

vy ~ Beta(1,a’) (11)

(c) For k(= 1..00), set the user’s latent preference:

k-1
Buk — 611-1”‘111\' H(I - “ul’) (12)
=1

(4) For each item ¢(= 1...N):
(a) Draw the item’s latent attractiveness:

N
1) 1o Ga.m.-ma(c’, H ],,,jii._,.) (13)

n=1

(b) For k = (1...00), set the item’s latent feature:

Bir. ~ Gammal(c,n;) (14)
(5) For u(=1...M) and i(= 1...N), draw

yui ~ Poisson ( Z B.I,k,:'r35k> (15)

k=1



Inference

* Variational Inference for MPF:
* The mean-field family assumes each distribution is independent of the

others.
q(hu, hi,0, 3,&,1,2) = 1_ qg(htum|Cm) H q(hin|pn)
11 (l(gukhjuk) F: (1("‘35#‘“[”") H (1(611 |HU) (]7)
u. k i,k u
__“q(”ilTi) H f]('?ui.kl%n.k)
i u,t,k

We use the class of conditionally conjugate priors for hu,,,,
iy, Ouk, Bik, &, mi and z,; ;. to update the variational pa-
rameters {(, p, v, ji, K, 7, ¢ }. For the Gamma distribution, we
update both hyper-parameters: shape and rate.



Inference

* Variational Inference for MiPF:
* The mean-field family assumes each distribution is independent of the others.

g(hu, hiw,3,6,1n,2) = H q(htm |Cn) H q(hin|pn)

m -
o0 0
I 11 a(vurlowe) TT T a(Bilmir) T | a(€ulrn)
k=1 u k=1 i »

00
__(1(”""?) 1] q(':m'.kl(.-")ui_k)

b - A
) k=1 u



VI

Algorithm 1 Variational Inference for MPF

I:
2:

21:
22:
23:

Initialize the variational parameters {(, p, v, pi, K, T, ¢ }.
Set the number of components K.
Sample shape of user’s latent behavior, and shape of
item’s latent attractiveness, as in Egs. (22) and (24).
Sample shape of the weight of user’s attribute (in meta-
data), and shape of the weight of item’s attribute (in
metadata), as in Eqgs. (18) and (20).
repeat
for each rating of user u to item 7 that y,,; # 0 do
Update the multinominal as in Eq. (26).
end for
for each user do
Update the latent preference as in Eqs. (27) and (28)
Update rate of latent behavior as in Eq. (23).
for each user attribute in metadata do
Update rate of the weight as in Eq. (19)
end for
end for
for each item do
Update the latent feature as in Egs. (29) and (30).
Update rate of latent attractiveness as in Eq. (25).
for each item attribute do
Update rate of the weight as in Eq. (21).
end for
end for
until convergence




Experiments

* Datasets:

* (1) Movielens100K, Movielens1M and Movielens10M [Harper and Konstan,
2016].

* (2) Book-Crossing [Ziegler et al., 2005].

e Baseline methods:

* HPF [Gopalan et al., 2015] as it outperforms many baselines in MF including
NMP, LDA and PMF.

* Bayesian Nonparametric PF (BNPPF) [Gopalan et al., 20143].

* The latest PF: Hierarchical Compound PF (HCPF) [Basbug and Engelhardt,
2016].



How do MPF/MIPF significantly outperform
other PF models?

Movielens100K

Movielens1lM

Movielens10M

Book-Crossing

Normalized Mean Precision Normalized Mean Recall
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Top-20 Recommendation Compared with baselines
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MPE
® MIPF
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How does MIPF effectively estimate the
number of unbounded latent components?

Movielens100K Movielens1M
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How do MPF/MIPF deal with sparse
items/users?

109 178
223 218
901 412
812 534
111 245
421 312
112 121
198 157
349 335
12 765
HCPF -e MIPF

Example of MIPF in handling sparse items in comparison with HCPF.



Contributions

 MPF/MIPF improve precision when working with large and sparse
data by integrating user/item metadata.

* MIPF efficiently estimates the number of latent components.

e The variational inference for MPF and MIPF applies to massive data.



Statistical Learning of Large-scale,
Sparse and Multi-source Data

Trong Dinh Thac Do and Longbing Cao. Gamma-Poisson Dynamic Matrix
Factorization Embedded with Metadata Influence, NIPS2018



Motivation

* Deal with large and sparse data.
* Solve the problem of sparse users/items and cold-start.

e Capture the dynamics of data.



Gamma-Poisson Dynamic Matrix Factorization model
incorporated with metadata influence (MGDMF)

User's Static Portion User's Dynamic Portion

Enrich prior of
user’s static
portion using
metadata

Model dynamics of
a user

Enrich prior of
item’s static
portion using
metadata

Model dynamics of
item

Item's Static Portion Item's Dynamic Portion




Gamma-Poisson Dynamic Matrix Factorization model
incorporated with metadata influence (MGDMF)

. Metadata Integration:

(a) For each user:

i. Draw the weight of m*" attribute in user metadata hu,,, ~ Gamma(a’,b')

.. "‘] ‘UL TN
ii. Draw latent user preference &, ~ Gammal(a,[],,_, h i)

iii. Draw global static factor @, ~ Gamma(b,£,)

(b) For each item:
i. Draw the weight of n'”* attribute in item metadata hi,, ~ Gamma(c'.d")
ii. Draw latent item attractiveness 7; ~ Gamma(c, H:ﬂ hi{é"")
iii. Draw global static factor 3,, ~ Gamma(d, 1;)
2. Dynamic Modeling:

(a) For each user:

i. Draw initialized state of local dynamic factor #,,;. , ~ Gammal(ag, agbg)
ii. For each time slice £ > 1:
A. Draw auxiliary variable \,;. ;1 ~ Gamma(ay, ax0y,p..—1)
B. Draw local dynamic factor 0, ; ~ Gamma(ag, agAuk.i—1)
(b) For each item:
i. Draw initialized state of local dynamic factor 3;, ; ~ Gammalag,agbgz)
ii. For each time slice £ > 1:
A. Draw auxiliary variable ¢;;. ;1 ~ Gammal(a,,a,3ig.1—-1)
B. Draw local dynamic factor 3. ; ~ Gamma(ag.agtifs—1)

3. For each rating:

(a) Draw yy; ¢ ~ P“".""""O”(zk(yuk.! +guf\')(ﬁz’k.f -+ 3,;,))



inference

= Variational Inference for mGDMF:
= The mean-field family assumes each distribution is independent of the others.

g(hu, hi,€,1,0,3.\,1,0,3,2) = q(hm |Cn) ]::q(hi,,|p,,) H q(&ulbu) Hq(u,-|7',-)

m n u i
1—:: (muk|’_juk) s (H,Lll_llk) r: ]( uk.tl"/uk.t) H (J(a’i‘k.z |I[‘ik.l) (3)
w. k w. k.t i, ki

l_- 1 uk tl Juk,t H (1 ik, tlwzk t H q(£ui.t.k|¢ui.l.k)

u. k.t ikt u,i,t.k

We use the class of conditionally conjugate priors for hu,,, hi,, &,. 1;. Ok, Eik, Bk Nako i B
tik.+ and z,; ¢ 5 to update the variational parameters {(, p, K, 7, 7, Ji, I, 7, jt, w, ¢ }. For the Gamma
distribution, we update both hyper-parameters: shape and rate.



inference

Table 1: Latent Variables, Type, Variational Variables and Variational Update for Users. Similar
variables for items (i.e., hin, i, 3,1, Bik, tik+) can be found in the supplementary. R,,, is the number

attribute, K is the number of latent components, and ¥(.) is the digamma
function. The Gamma distribution is parameterized by shape (shp) and rate (rte).

of users having the m

th

Latent Variational -
; : Variational Update
Variable Variable p
e 5l
hu,, Gamma (3P, (ot @’ +Rpma, ' + 35, R
.shp _rte C ShP \ fry m u","’
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SVI

Algorithm 1 SVI for mnGDMF

Initialize {(, p, K, T, V, 11, v, ., vy, w, ¢}.
Set K': # latent components, U: # users, I: # items, iter and e.
repeat
for each time slicet = 1...7 do
Sample a rating ¥, ; uniformly from the dataset.
Update the local variational parameter of multivariate parameter ¢.
Update all intermediate variational parameters similar to Eq. (4).
Update all global variational parameters similar to Eq. (5).
Update the learning rates iter.
end for
until convergence




Experiments

* Datasets:
* (1) Netflix-Time, Netflix-Full [Li et al., 2011].
* (2) Yelp-Active [Jerfel et al., 2017].
* (3) LFM-Tracks, LFM-Bands [O. Celma Herrada, 2009].

e Baseline methods:

* Static:

* HPF [Gopalan et al., 2015], HCPF [Basbug and Engelhard, 2016] as it outperforms many baselines in MF
including NMP, LDA and PMF.

* PF-last and HCPF-last are trained by using the last time slice in the training set as the observations.
* HPF-all and HCPF-all are trained on all training ratings.

* Dynamic:
e dPF [Charlin et al., 2016] and DCPF [Jerfel et al., 2017].

* dPF was shown to outperform state-of-the-art dynamic collaborative filtering algorithms, specifically,
BPTF and TimeSVD++.



Effect of metadata and dynamic data
modeling
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Figure 1: Top-50 Recommendations Compared with Baselines.



Effect of metadata and dynamic data

modeling

Table 2: Predictive Performance on Five Datasets w.r.t. NDCG and AUC.

Netflix-Time

Netflix-Full

Yelp-Active

LFM-Tracks

LFM-Bands

NDCG AUC NDCG AUC NDCG AUC NDCG AUC NDCG AUC

mGDMF
»DMF

0.389
0.367

0.9145
0.9121

0.403
0.398

0.9321
0.9320

0.494
0.416

0.8650
0.8512

0.310 0.8245
0.275 0.8101

0.367
0.354

0.8217
0.8139

DCPF
dPF
HCPF-all
HCPF-last
HPF-all
HPF-last

0.293
0.257
0.241
0.183
0.231
0.162

0.9023
0.9012
0.8012
0.7423
0.8035
0.7213

0.315
0.301
0.245
0.201
0.250
0.198

0.8991
0.8901
0.8370
0.7600
0.8124
0.7540

0.357
0.332
0.243
0.172
0.248
0.145

0.8418
0.8321
0.8032
0.7312
0.8130
0.6810

0.231 0.8098
0.210 0.8019
0.209 0.7010
0.132 0.5893
0.179 0.7084
0.143  0.6050

0.275
0.298
0.213
0.160
0.184
0.141

0.8011
0.8122
0.7121
0.6101
0.7013
0.5982

5:1!:11 (%)
8mrr.r (‘7()

32.76

L35

140.12  26.78

27.94

3.67

38.38

2.76

103.54 23.62 240.69 27.12

3420 1.82
13485 44.83

23.15

1.70

160.28 37.36




Effect of handling sparse users/items and the
‘cold-start’ problem
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Figure 2: Percentage (%) of Sparse Items Recommended Precisely for 10 Users by mGDMF, GDMF
and DCPFE.



Case study of mGDMF-based
recommendation
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Figure 3: Analysis on two users ‘U270" and ‘U437 with the same metadata in Last.fm. The number
of times that users listened to two ‘rock’ and ‘pop’ tracks with 16 time slices is shown on the left. The
distribution of the number of times that U270 and U437 listened to top 10 ‘rock’ and *pop’ tracks
and the top10 precise recommendations by mGDMF are shown on the right.



Contributions

e A factorization model that uses Gamma-Poisson structure to model
massive, sparse and dynamic data.

* A conjugate Gamma-Gamma of integrating the observable user/item
metadata (e.g., ‘age' of a user and ‘genre' of a movie) with user/item
latent variables to model user/item rating sparsity.

* A conjugate Gamma-Markov chains to model user/item latent
variables that change smoothly over time.

* An efficient stochastic variational inference for massive, sparse and
dynamic data.



Non-IID Behavior Analytics

More at KDD2018 Tutorial on Behavior Analytics

www.datasciences.org



on-1ID behavior analytics
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Behavior Model

Longbing Cao, In-depth Behavior Understanding and Use: the Behavior
Informatics Approach, Information Science, 180(17); 3067-3085, 2010.




Examples of Coupled Objects and Behaviors




An Abstract Behavior Model

e ™
. |
. —1 Subject ¥
* An abstract behavior model Semogan]] ot | (@ehavier) [ 1€t
* Demographics and circumstances ] Subect —
of behavioral subjects and objects TPt (ool ) 1B
1 . | Object |4 ell |
* Associates of a behavior may form — Acton
into certain behavior sequences or fime f— |Tme | [ A2
network; » Eoror3) < Status
. . . Context
* Social behavioral network consists : : Place Consirai Plan
. mpac
of sequences of behaviors that are | , P |
organized in terms of certain social Behavor e~ |
relationships or norms.
* Impact, costs, risk and trust of
behavior/behavior network ((Behavior ) coravor. | ADU | sonavr-
\_ _relatiunship relationship _/




Behavior Vector & Couplings

* Behavior instance: behavior vector
F={s.0e.g.bal fietow uml
* basic properties
 social and organizational factors

 VVector-based behavior sequences

* Behavior Coupling Relationships
v’ Logic/semantic behavior couplings

v’ Statistical/Probabilistic behavior
couplings

* Vector-oriented behavior representation



Group/Coupled Behavior Analysis

Yin Song, Longbing Cao, et al. Coupled Behavior Analysis for Capturing Coupling
Relationships in Group-based Market Manipulation, KDD 2012, 976-984.
Yin Song and Longbing Cao. Graph-based Coupled Behavior Analysis: A Case Study on

Detecting Collaborative Manipulations in Stock Markets, JICNN 2012, 1-8.
Longbing Cao, Yuming Ou, Philip S Yu. Coupled Behavior Analysis with Applications, IEEE

Trans. on Knowledge and Data Engineering, 24(8): 1378-1392 (2012).




Behavior Formal Descriptor

We tackle the coupled behaviors from either one or different
actors, denoted as intra-coupling and inter-coupling, respectively.

Behavior Feature Matrix

y s ' intra-coupling
@_:11 Ora__--. Oij,,,
Oo1 | Os9 ... f?)gjmw
FM(B) = + , +
\O1 | O ... Orj.. )
inter-coupling

An actor <7; undertakes .J; operations {€i1.Cis..... 0y}
| actors: {1, 9%, ..... o7 }



Intra-Coupling

* The intra-coupling reveals the complex couplings within an actor’s
distinct behaviors.

Definition 2 (Intra-Coupled Behaviors): Actor <7’s behav-
iors B;; (1 < j < Jy4e) are intra-coupled in terms of
coupling function 0,(B),

For instance, in
the stock market, the
investor will place a

sell order at some
Tonas time after buying his

B! =B, («,0,0)| Z 6,(B) ® B, (IV.2) or her desired
instrument due to a

=1
’ great rise in the
where Zj:'lm ® means the subsequent behavior of B; is B, trading price. This is,
intra-coupled with #;(IB), and s (Bi1 Bio ... Byy to some extent, one
Bsr Bae ... Boy, way to express how
FM(B) = : ; . : these two behaviors

B' IB. B ' are intra-coupled
N " fmaz with each other.



Inter-Coupling

* The inter-coupling embodies the way multiple behaviors of different

actors interact.

Definition 3 (Inter-Coupled Behaviors): Actor <7;’s behav-
iors B;; (1 < i < [I) are inter-coupled with each other in
terms of coupling function 7;(B),

I
BY, :=B.;(«7.0.n)| Y _n:i(B) ©B;;. (IV.3)
i=1

where Zf © means the subsequent behavior of B; is B;; inter-
coupled with 7, (B), and so on.

Bi1f Bio

Boi1f| Bao
FM(B) — .

Brifj Bre

For instance, a trading
happens successfully
only when an investor
sells the instrument at
the same price as the
other investor buys this
instrument. This is

another example of how
to trigger the
interactions between
SPPR inter-coupled behaviors.




Coupling

* In practice, behaviors may interact with one another in both ways of intra-
coupling and inter-coupling.

Definition 4 (Coupled Behaviors): Coupled behaviors B,

refer to behaviors B; ;, and B,,;, that are coupled in terms

of relationships h(6(B),n(B)), where (i1 # i2) V (j1 #

JQ}A(]- E ";'133'2 E I)A(l S jl JQ < Jmam)

For instance, we
consider both the
successful trading
between investor

A, (buy) and

. ) Jmaz investor A, (sell),
B. (Bml )" (]Bmg) =B (. O,F) Z Z and then the selling
i1,i2=1 j1,j2=1 behavior
h(ejljfz (B)" Miyiq (H’)) (Etl.?lB%gjg ): (IV4) conducted by Al

after he or she has
bought the

instrument at a

where h(0;, j,(B),7;,,(B)) is the coupling function de-
noting the Correspondmg relationships between IB; ;, and

B, ;.. Zimﬂ_l Zh, ; @ means the subsequent behaviors

of B are B, ;, coupled with h(0;,(B),n;, (B)), Bi,;, with relative low price.
h(0;,(B).n:,(B)). and so on.




Behavior Aggregator

We conduct behavior aggregations to interpret the interactions of intra-
coupled and inter-coupled behaviors. The outcomes of the behavior
aggregations form the basis of behavior verification.

Three types of aggregations

Intra-Coupled Inter-Coupled Combined
Aggregation Aggregation Aggregation

function 6, function 7 function 1(0;, .. Miis)




Coupled Behavior Analysis

Theorem 1. (Coupled Behavior Analysis (CBA)) The analysis
of coupled behaviors (CBA Problem for short) is to build the
objective function g(-) under the condition that behaviors are
coupled with each other by coupling function f(-), and satisfy
the following conditions.

);
Jo (10)



Example of Group Behavior Analysis

* Short-term manipulation behaviors as cause

Price . .
125.85 ~_____ Behavior exterior
l presentation
|
|
|
|
|
I
3.26 Is ]\
Buy 1Sell
Wol : :
I Possible
: i behavior
mT Tfm " interior
driver




Pool Manipulation

TABLE 1

An example of buy and sell orders

| Investor | Time [ Direction | Price | Volume |
(1) 09.59:52 Sell 12.0 155
(2) 10:00:35 Buy 11.8 2000
(3) 10:00:56 Buy 11.8 150
(2) 10:01:23 Sell 11.9 200
(1) 10:01:38 Buy 11.8 200
(4) 10:01:47 Buy 11.9 200
(5) 10:02:02 Buy 11.9 250
(2) 10:02:04 Sell 11.9 500

o
Price (i Lepend:
12.0 * (2} {2) * aell
11.% \ + T' 4 buy
1.8 B iade
H A A A @ ®
(23 (3] (1)
>
9:59:52 10:00:35 10023 10200 40 10:02:02 Time
L0056 10:01-38 10:02:035

Fig. 1. Coupled Trading Behaviors



CHMM Based Coupled Sequence Modeling

* Coupled behavior sequences

¢y ={d11,..., 017}

by = {021 .. ,{_:".:21:_

bo = {dc1,....dca}
* Coupling relationship

Rij(®y, D)

Rg‘_} i_ R: Rijl::{r’i,‘i}ijl = &

* Behavior properties

@ik Pik1s - - Pik.L)



CBA - CHMM

R AT

-1 r r+1 Tasic

(b) The Structure of the CHMM

C'BA problem — CHMM model
®(B.)|category — X
M(®(B.))|dik([pis]1s - - -, [Pul) = Y
f(OC¢-).n(-)) — 2
Initial distribution of ®(B.)|category —

(15)
(16)
(17)
(18)
(19)



Graph-based Coupled Behavior Presentation

* Coupled hidden Markov Model

(CHMM)
* Relational probability tree (RPT)
* Relational Bayesian Classifier (RBC) SO\

(c) The Structure of Graph-based Cou-
pled Behavior Model



CBA - Conditional Probability Distribution

buy;

buy; [——

(a) An Example of the Sub-
graphs for Each Target Behav-

—| trade;

trade;

zell)

A selly

C'BA problem — SRL M odeling (5)
F(0(),n()) — the CPD p(X'V|RFy,--- ,RFy)  (6)

plf;i'_u’] |RF1 RFsy,--- : RFH,]-'

1or CL(bY) =TT 0 e P(X' =z, |r fra,mfe, - o7 fnes M)
XY | RFy | RFs RF, b '
trade Tq rfi1 | rfor T fn1
trades Io rfm rfgg I‘fng

(b) An Example of the Relational Features
for Each Target Behavior



Empirical Results
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Empirical Results - Business Performance

wisalie = 10 mncies

‘L T T T
>y .
35r<_ g~ )
L Eﬁl
L R T =
LI L e
E B ¥ ‘-='I"_'_1
i i N
[ LR
TEF * PR
':\s: i 40 0 0
P=Hain
wissicm = 3 minele
45
___'.-"_:_"1-.__.
- T,
i ™ . “"H-“_
g 35 F oI~ B ——
3 LI
£ R DL Tl N
: L :“.'5\.
S 4
- 1] -
Al | 40 &0 B2

P-Main

Pl bur

wissden = 210 moncles

L
] &0 &0 3]
P-tium
witsin = &l mancles
“\\1._
]
TR er
s.t s
o g_-;-_g ..p I
" .
.ol ]
Fl-] 3 = *
0 L 3 -
i E
ED i) 40 &0 [
P-tium

[0 HMA=T - oo B - - HB-5 - —7— SR — = — CHUW —— ACHAM

Fig. 9. Return of Six Models

winsios = 70 mirles

& B T T T
b 0
a h"\-\.‘-
- 0., ~, 4
E " -
=
g L -;M"'-\.\,
[ S o, m,
® sk % B E
* i' $in g R S
§ + LEC R T~
-
-2t RS 1
+ ¥ £
1
E"\‘."Ifl i} 40 50 i

P-Hain

winsios = 30 il

2 ~.
| -
= ‘_ul.
E - i o,
g =
5.! o - o
BT g
+ h
- . ™
P
40 50 i
P=HMaim

Al Flelm

A | Reban

winsles = 20 mirmotes

as T T T
'.x.'\‘\" ™\ 1
3 S
5 B
PT R I S .
-
g g 2 l‘t ———
Qoo e - 2 ) ™ i
. o _= e - al B
il an a0 50 &0
P=kaim
winslis = 80 mifmdes
F
-1 8 k
i
. u—"'-.a.
] o E
L s S
2L Re—g
i S b
4 Bomong 77w g
= -
L3 E
L L L L
Fii] an a0 50 &0

P=Hom

[-m - BT o HMME - M-8 —v—- IHMM — = — CHMM —— ACH

Fig. 10. Abnormal Return of Six Models



Empirical Results — Learning Group Trading
Behaviors
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Dave Watts
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Non-IID Document Analysis

Xin Cheng, Duogian Miao, Can Wang, Longbing Cao. Coupled Term-Term Relation Analysis
for Document Clustering, ICNN2013.

Qiangian Chen, Liang Hu, Jia Xu, Wei Liu, Longbing Cao. Document similarity analysis via
involving both explicit and implicit semantic couplings. DSAA 2015: 1-10.




The BOW Similarity

Table 1. An Example of Document Representation: “DM” ,“ML”,“DB” and “CS”

denote “Data mining”, “Machine learning”, “Database” and “Computer science”, re-

spectively.
‘ DM ML DB 8
dq 0.5 0.0 0.1 0.3
da 0.0 0.5 0.1 (125
d3 0.0 0.0 0.8 0.1

* The cosine similarity between d1 and d2 is 0.253, and
0.231 for d1 and d3

* The similarity values are approximate, thus, it is unable to
identify which two documents are more alike if the
relation between terms is not captured.



Coupled Term-Term Relation
Learning

Xin Cheng, Duogian Miao, Can Wang, Longbing Cao. Coupled Term-Term Relation
Analysis for Document Clustering, IJCNN2013.




Intra-term Relations

L Terms are relational if they
/% co-occur in the same document.

{a)

* Terms ti and tk co-occur in document dx, while tj is the co-
occurrence term of tk in document dy.

* Then, term ti is considered to be associated with tk in
document dx, and term tj is related with tk in document dy.



Inter-term Relations

Definition 3. Terms t; and t; are said to be inter-related, if there erists at
least one term t), such that both TaR(ty.t;) > 0 and TaR(ty,t;) > 0 hold. The
term tp is called the link term between them. The relative inter-relation
between terms t; and t; linked by the term ty is formalized as:

RIeR(t;, t;[ty) = min(IaR(t; t,), JaR(t; 1)), (3.3)
d ._.-"'F-- - - -, d .-'"'F.--" i _
] x/ L]
¥ ® ' ': tl..'" [ ] |
HN‘m}t.,_l‘_ =4 i et ® g
ll_-" '''''' 4 T -
d‘l‘.__ 3 .::-I-- 8 ] ) ..--_." N tl ® a w _.-"'Il
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Document Similarity by Learning
Term Pair Couplings

Qiangian Chen, Liang Hu, Jia Xu, Wei Liu, Longbing Cao. Document similarity

analysis via involving both explicit and implicit semantic couplings. DSAA 2015: 1-
10.




Main |deas

Semantic Couplings of Term Pairs

. ‘ Intra-term couplings
= N A -
" Inter-term couplings

Document

Documents .
Representation ‘

Applications | <

Enriched Document
Representation

Document Similarity



Intra-Term Pair Couplings

1. Semantic Intra-couplings within Term Pairs

1) DEFINITION 1 tpf-idf, short for term pair occurrence frequency - inverse
document frequency, reflects the importance of a term pair to a document in a
collection or corpus. tpf counts the number of times a term pair occurs in a
document. The tpf-idf scheme is formatted as:

tp.f?’df((tht})? d?D) = tpf((tht.}'): d) X ?’df((tht.}')? D)
where (t;, t;) stands for a term pair, and d is a single document in a
document collection D.

‘ Term pair
occurrence
t to - 147 frequency matrix
t1 0 tpfiz -+ tpfix

ta | tpfax 0 - iphx
Mips = . : ; - :

te \tpfk1 tpfr2 -+~ 0



Inter-Term Pair Couplings

2. Semantic Inter-couplings between Term Pairs

1) Based on My, the term pair frequency graph G is an ordered pair, G5 =
(T, E¢pr), comprising a set T of terms as vertexes, T = {ty |k € [1,K]},
together with a set E, s as edges to reflect the tpf of every term pair.

d1 d'l

= tpf = = —=Intra-Coupling == Inter-Coupling

— o e o e e e m e S E mm S me mm mme ey — o e e o e e e e e S Ee R S mme mm mme ey

g Intra-coupling: counts the explicit ‘I ; Inter-coupling: counts the implicit ‘I
: relation of each directly connected term 1 : relation of each term pair on Gy ¢ I
I I
] ]

! pa|r on Gy ! through other terms

— o e e o e e e e e e me e e e e e e — e o e o e



Non-|ID Vision Learning

Yinghuan Shi, Wenbin Li, Yang Gao, Longbing Cao, Dinggang Shen. Beyond IID:
Learning to Combine Non-IID Metrics for Vision Tasks. AAAI2017.



Non-1ID Metric Learning

Image Segmentation / \

=~ O Three phases:

2 o v' (non-IID) features
o, 00 ® v" various non-/ID
regio]'n-to-region graph .

representations
v' joint metric learning

Histology Image Identification

)t o @ | °
®O e O : :
o, 00 ® % Good adaptation with the best
oot gt combination automatically learned
¥ lID Method Non-/ID Method

_________________ o | S Easy to implement

E E i | Multi Non-/ID Representation i

5 mmmtes

: Pt rnin I .

: a1 on ] o) =T 1| % Many features, representations

[ Metric Learning] !
************************************************ and classifiers can be integrated

N /




Various Non-lID Representations

» Core ldea:
Intra-node relation
(within node) + Inter-node
relations (between

neighbored nodes)

/> Capturing various dath

characteristics

v" Direct Product
(DP)

v Hausdorff
Distance (HD)

k v MaxPooIing(MPy

Graph 1 Central Nodes Central Nodes Central Nodes
Q d(@.O) =05 d(@.C ) 0.5 d@. O)=05
+ +
. Sumrounding Nodes Surrou d ing Nodes Surmunding Nodes
@
@ @ 0000 0000
Graph2 =i ©)|o2|08|os]os ©|o2]08|05|08
._ O Oles|o1|os|or DiscreteSet 1 Discrele Set2 ©|os|o.1]os|0r
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g - 14
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Learning/combining Multiple Non-IID
Representations

Objective function for combined non-1ID metrics

arg min &(€2; w’K?) st w? =1, w" >0
g

Q. wr ‘
P P

R ] Q( ;ijU pkp) &
algivljunz{kuﬂ Zu Zu <+

Pair-wise Constraint

A (1 — ya)h [||Q(Z wPk? — Z w?k?) |

5.9.1

—I\Q(Zu”kp Z“'“kp)H +1]
s.l.Zu.‘“ =1,w" > 0.

Triplet Constraint



Feature Construction

Feature construction

Hand-crafted features
(HC):

* Those features whose
effectiveness are already
validated are chosen,
including height, width,
RGB, HSI, area,
circumference, Fourier
descriptor, entropy, and
central moment.

* |In total, to represent a
cell region, 37-
dimensional features are
used.

Deeply-learned features (DL):

For relative small-scale cell
regions compared with natural
images,

e use the bounding box to
bound the irregular
segmented cell regions, resize
them into 32x32 patches,

 employ the LeNet model to
automatically learn the deep
features,

e form a 64-dimensional
feature for each cell region.




Evaluation

3 ROC curves (HC) 5 HOCuws oL _
09 “‘ 09 .
08 08
Our methods outperform othersin| - g | e
« e PCA+RF PCA+RF
o/ Y Y/ et 0¥
terms of AUC, Accuracy, ool | ofl e
03l o [ —
E e . |77 Nieor oep | e
Specificity, Sensitivity, F1 score . .~ y e
: | —— NIME-CK : |——NIME-CK
OD 02 0.4 0.6 0.8 1 Gﬂ 0.2 0.4 06 0.8 1
FPR FPR
[ Method | (Lec2010) CKNN PCA+RF KPCA GPLVM mSRC LMNN LMCA | MIMEDP NIME-HD NIME-MP  NIME-MR |
ACuc 82.0 85.0 79.0 75.0 81.0 87.0 80.0 77.0 86.0 83.0 84.0 89.0
SPuc 80.8 83.0 76.4 76.6 78.2 87.8 78.9 76.5 84.6 85.1 88.6 91.5
SEnc 83.3 87.2 82.2 73.6 84.4 86.3 81.3 77.6 87.5 81.1 80.4 86.8
Fluc 81.6 84.5 719 75.7 80.0 87.1 79.6 76.8 85.7 83.5 84.9 89.3
AUCyc 87.9 91.6 84.2 79.1 86.8 93.8 853 81.6 92.7 89.1 90.6 96.0
ACpy, 86.0 84.0 82.0 79.0 81.0 86.0 810 79.0 88.0 85.0 84.0 90.0
SPpL 89.1 84.0 83.3 76.4 81.6 89.1 81.6 80.9 89.6 85.7 79.3 88.5
SEpL 83.3 84.0 80.8 82.2 80.4 83.3 80.4 77.4 86.6 84.3 90.5 91.7
FlpL 86.5 84.0 82.4 719 81.2 86.5 81.2 79.6 88.2 85.2 82.6 89.8
AUCpL 92.8 90.3 87.9 84.2 86.6 92.8  86.6 84.1 95.0 91.5 90.8 96.9




Image Segmentation
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Figure 4: Tyvpical results. First to last columns: Graph Cut,
Grab Cut, LMNN, LMCA, NIME-DP. NIME-HD, NIME-MP,

NIME-CK.




Convergence

0 200 400 600 800 1000 O 200 400 600 800 1000 O 200 400 600 800 1000 O 200 400 600 800 1000/

Figure 3: Illustration of the convergence of NIME-CK.



Pattern Relation Analysis/
Combined Pattern Mining



Combined pattern pairs

* Pair patterns

Pu=G(P.P)

[ Xi—=T
-P.. { ‘_-1 . 1

A= T
& { XpANXe = T3

Longbing Cao. Zhao Y., Zhang, C. Mining Impact-Targeted
Activity Patterns in Imbalanced Data, IEEE Trans. on
Knowledge and Data Engineering, 20(8): 1053-1066,
2008.

| Conf (Py) — Conf (P2)|, if Ty = T

Laie(P) = { /Conf(P1) Conf(I%), ifTy and T are contrary;
0, otherwise;

Ipair(P) = Lifty (R1) Lifty (Re) dist(Th, Tz)

Lift(Xp A Xe —T)
Lift(X, — T)

Conf(Xp AN Xe —T)
Conf(X, —1T)

Conto(P) =

Conto(Xp A Xo — T)

Irule (—Xr]) AN —Xre — T) == LEﬂ'( Y. . T)

Cps(Xe = T|Xp) = Prob(Xe — T|X,) — Prob(Xe| Xp) x Prob(T|X,)

_ Prob(X, NX, —=T)  Prob(X, N X,) " Prob(X, —T)
B Prob(X,) Prob(X,) Prob(X,)




Combined pattern pairs

Traditional Association Rules

v T Conf (%) | Count | Lift
Arrangement Repayment Class
irregular cash or post office A 52.4 40858 | 1.8
withholding cash or post office A =76 13354 1.9
withholding & irregular cash or post office A T2.4 2941 1.6
withholding & irregular | cash or post office & withholding B 60.4 1422 1.7
An Example of Combined Patterns
Rules Xp I Xa T ] Cnt|Conf| I:|Lift|Contp|Conte| Lift off Lift of]
Demographics|Arrangements| Repayments |Class (%) Xp =T X =T
Py age:65+ withholding | withheolding | C 50| 63.3]2.91|3.40| 2.47| 4.01 0.85 1.38
& irregular
P income:0 | withholding | cash orpost | B 20{ 69.0|1.47(1.95] 1.34] 2.15 0.91 1.46
& remote:Y & withholding
& marrital:sep
& gender:F
Ps mecome:0 | withholding | cash orpost | A |[1123]| 62.3|1.38(1.35] 1.72| 1.09 1.24 0.79
& age:65+ & withholding
Py meome:0 | withholding | cash orpost | A | 469| 93.8/1.36|2.04] 1.07| 2.59 0.79 1.90
& gender:F
& benefit:P




Combined pattern clusters

* Cluster patterns

P:=G(FP,....P,)(n = 2)

X =Ty
c-l ...
X — Tk

4 - =

X, —1T
A ‘\L"‘l . 1!“2
ANXeaANXep — T3

“Ap
¥

X
X

95

1

‘\i:'.k—] - '1_}{

I{:lustcr (C} =

max  Jpaic( L. I
PP eCiti pLu( i _,1}



Combined pattern clusters

An Example of Combined Pattern Clusters

Clusters | Rules Xp Xo T\ Cnt| Conf| I.| Ic|Lift| Contp |Cont. Lift of| Lift of
demographics | arrangements | repayments (%) Neg =T |A. =T
Py P marital:sin trregular cashorpost|A| 400 830)1.12|067| 1.80 1.01 2.00 0.90 1.79
= &gender:F withhold |cashorpost|A| 320 784|1.00 1.70 0.89 1.89 0.90 1.90
P= &benefitN | withhold & |cashorpost|B| 119 804(1.21 228 1.33 2.06 1.10 1.71
urregular & withhold
Fr withhold |[cashorpost|B| 643 61.2]1.07 1.73 1.19 1.57 1.10 1.46
& withhold
Py withhold & | withheld & [B| 237 &0.6[0.97 1.72 1.07 [.535 1.10 1.60
vol. deduct | direct debat
o cash agent C| 33| e00]1.12 3.23 1.1%8 3.07 1.05 2.74
Po Pi1 age:62+ withhold |cashorpost|A[1980| 933[{086(0.39] 2.02 1.06 1.63 1.24 1.90
Fia uregular  |cashorpost|[A| 462 887|087 1.92 1.0% 1.33 1.24 1.79
Fia withhold & |cashorpost|A| 132 857[096 1.86 1.18 1.50 1.24 1.57
trregular
Py withhold & | withheold [C| 30 &3.3[2.91 340 2.47 401 0.85 [.38

trregular




Pattern relation analysis
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Structural pattern relations

* Peer-to-peer patterns
Pu=PFuUuP
* Master-slave patterns
[P =P UP, Py = f(P))
* Hierarchical patterns

(P:=P,UP/UP,UP,P;=G(P),...,P, = G'(P)}



Temporal pattern relations

* Independent patterns
(P : P»)
* Sequential patterns
{‘!TJ]:H_’}
e Hybrid patterns
(PP ®Poy;® € {uls))



Conclusions & Prospects



How Can Blind People Recognize An Elephant?




Non-IID Learning: A Challenging Problem
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Non-IID Learning: A Significant Area




Some Fundamental Issues

* How can we determine whether a dataset is IID or non-IID?

* Whether association, correlation, causality, dependency,
uncertainty/randomness cover all relationships?

* Real-life problems often involve multiple sources (views, modals,
tasks, etc.) of data, are they ID?

 What do we mean by ‘heterogeneity’? Does ‘identically distributed’
mean "homogeneity’?

 What do we mean by ‘independence’ in a broad sense?



Some Fundamental Issues

* Are KNN, SVM, decision tree, classic ensemble methods IID?

* Does classic transfer learning capture non-lIDness?

* In probabilistic graphical modeling, how non-lIDness is modelled?
* Do deep neural networks capture non-lIDness? To what extent?



Aspects of Non-1IDness

Longbing Cao. Coupling

Learning of Complex

Interactions, Journal of

Non-lIDness Aspects
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Hierarchical Non-lIDness
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Longbing Cao. Coupling
Learning of Complex
Interactions, Journal of
Information Processing
and Management, 51(2):
167-186 (2015)
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